ELECTROSTEEL CASTINGS LIMITED

Vill: Kashberia, P.O.: Shibramnagar, Haldia, Dist.: Purba Medinipur 721 635, India

Tel: 03224 277 721, Fax: 03224 278107 CIN: L27310OR1955PLC000310 Web: www.electrosteelcastings.com

Ref: ECL/MOEFCC/FA/Ha!dia/01/22-23

Date: 21/05/2022

To
The Deputy Director(S),
Ministry of Environment, Forest & Climate Change,
Eastern Regional Office,
A/3, Chandrasekharpur,
Bhubaneswar – 751023.

Ref: EC Letter No.-J-11011/02/2016-IA-II(I), dated 12.04.2017.

Sub: Half Yearly Compliance Report of the conditions of Environmental Clearance issued by Ministry of Environment & Forest, New Delhi for Proposed installation of the Ferro Alloy Plant through setting up of 1X6MVA & 1x9MVA submerged Are Furnace for production of Ferro Manganese (38,156TPA) or Silico Manganese (27,109 TPA) or Ferro Silicon (10,421 TPA) by M/s- Electrosteel Castings Ltd, Located at Haldia, Dist –Purba Medinipur, West Bengal for the **Period October-21 to March-22**.

Respected Sir,

This has reference to the Environmental Clearance letter no-J-11011/02/2016-IA-II(I), dated 12.04.2017 issued by Ministry of Environment, Forest & Climate Change, New Delhi.

We enclose herewith Compliance Report for the Period of October-2021 to March-2022 for your perusal.

This is for your information.

Thanking you, Yours faithfully,

For ELECTROSTEEL CASTINGS LIMITED,

(G. C. Mahto) AVP - HW

Enclo: a) EC Compliance Report-(Annexure-1).

- b) Report of Stack Monitoring (Annexure-2).
- c) Report of AAQM (Annexure-3).
- d) Report of Ambient Noise (Annexure-4).
- e) Report of Neurological & Periodical Health check-up (Annexure-5).

ELECTROSTEEL CASTINGS LIMITED

Vill: Kashberia, P.O.: Shibramnagar, Haldia, Dist.: Purba Medinipur 721 635, India

Tel: 03224 277 721, Fax: 03224 278107 CIN: L27310OR1955PLC000310 Web: www.electrosteelcastings.com

CC: - 1) Regional Director,
Central pollution control board,
Southend conclave, Block 502,
5th & 6th floor 1582 Rajdanga main road,
Saratpark, Bose pukur, Kasba.
Kolkata-700107.

2) Regional Director, GOI, MOEF & CC, Integrated Regional Office, Kolkata, 1b-198, Salt Lake City, Sector –III, Kolkata-700106.

3) The Asst. Environmental Engineer & In- charge. West Bengal Pollution Control Board, Haldia Regional Office, Raghunathchak, P.O:- Barghasipur, P.S:-Bhabanipur, Medinipur (East)-721657.

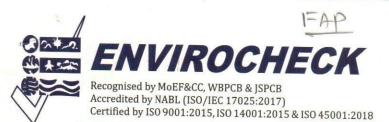
ENVIRONMENT CLEARANCE SIX MONTHLY COMPLIANCE REPORT (FROM OCTOBER-2021 TO MARCH-2022)

Project Name :- Proposed installation of the Ferro Alloy Plant through setting up of 1 x 6 MVA & 1 x 9 MVA submerged Arc Furnace for production of Ferro Manganese (38,156 TPA) or Silico Manganese (27,109 TPA) or Ferro Silicon (10,421 TPA) by M/s. Electrosteel Castings Ltd., located at Haldia, Dist. Purba Medinipur, West Bengal. Environment Clearance: J-11011/02/2016-IA-II (I), dated 12.04.2017

	CONDITION OF ENVIRONMENTAL CLEARANCE	STATUS OF COMPLIANCE
PART	A- Specific Conditions	
i.	The project proponent should install 24x7 air monitoring devices to monitor air emission, as provided by CPCB and submit report to Ministry and its Regional Office.	OCEMS has been installed in two stacks one is connected with Furnace stack & another one is connected with raw material handling stack. OCEMS connectivity of Furnace bag filter stack with CPCB server through M/s- Forb Marshal has been completed. Now real time online data is available in CPCB web portal.
ii.	Bag filters to be installed to reduce the emission of Particulate Matter (PM). PM emission should not exceed 100 mg/m3. Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the permissible limits which have been most recently prescribed by the Ministry and regularly monitored. Guidelines/Code of Practice issued by the CPCB should also be followed.	Two bag filters have been installed. One is attached with the 9MVA Submerged Electric Arc Furnace (SEAF) & another with raw material handling system. Stack monitoring reports of CPCB approved 3 rd party is attached in "Annexure-2" & the results are within the limit.
iii.	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.	Is being followed and records maintained.
iv.	Neurological Evaluation of workers exposed to Manganese should be monitored annually and the report should be submitted to the Ministry of Environment, Forest and Climate Change and its Regional Office.	Is being followed and records maintained. (Annexure-5)
v.	Measures shall be taken to reduce PM levels in the ambient air. Stack of adequate height & diameter with continuous stack monitoring facilities for all the stacks should be provided. In addition, sufficient air pollution control devices viz. bag house, bag filters etc. should be provided.	Following measures have been taken to reduce PM level in the ambient air. i) Two Stationary sprinklers & one mobile water sprinkler have been deployed for dust suppression. ii) Installed two stacks of adequate height & diameter with continuous stack monitoring facility in both stack. All stacks are connected with suitable PC device (Bag filter).

vi.	Dust extraction system comprising of pulse jet type bag filter, centrifugal fan and motor, duct work including suction hoods, dust supports, stack, duct hopper, rotary air lock valves etc. should be installed to control the primary and secondary emission.	Adequate dust extraction system comprising of required equipment has been installed to control the primary and secondary emission during commissioning of plant& presently in operation.
vii.	Water sprinkling arrangements as well as dry fog system to control fugitive emission shall put up. Water sprinkling should be carried out at the raw material stockyard to control fugitive dust emissions.	Stationary water sprinklers, mobile water sprinkler & Dry Fog System have been installed to control fugitive emissions. One Mobile water sprinkler has been provided to carry out water sprinkling in the raw material yard to control fugitive emission.
viii.	Efforts should be made to use maximum water from the rain water harvesting sources .If needed ,capacity of the reservoir shall be enhanced to meet the maximum water requirement .Only balance water requirement shall be met from others .Use of air cooled condensers shall be explored and closed circuit cooling system shall be provided to reduce water consumption. Water requirement should be modified accordingly.	One rain water harvesting tank has been constructed to use rain water. Close circuit cooling system has been provided to reduce water consumption.
ix.	10-15 m wide green belt should be developed all along the boundary of the plant and in all 33% of the area should be developed green by planting native and broad leaved species in consultation with local DFO and local communities as per the CPCB guidelines. The entire plantation work should be completed in 3 years.	Green belt development activity is continuing in consultation with Forest Range Office at Balughata under Nandakumar forest range office and local communities. Green belt cover is being maintained continuously throughout the year within the project site as well as outside the plant premises along the HDA road.
х.	All the Ferro alloy slag shall be used in the preparation of building materials.	All Ferro Alloy Slags are being used for road making & construction purpose only.
xi.	The Company shall submit within three months their policy towards Corporate Environment Responsibility which shall inter-alia address i) Standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forest norms/conditions,	Environmental policy has been already Submitted to MoEFCC on 10.01.2018. Standard operating procedure will be followed as stated in EMP.
	ii) Hierarchical system or Administrative order of the Company to deal with environmental issues and ensuring compliance to the environmental clearance conditions and	Already Submitted on 10.01.2018. All the environmental issues are communicated to the top management in
	iii) System of reporting of non-compliance/violation environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	monthly MIS meeting and also to the Board of Directors quarterly through a systematic structured format by Head – Environment.

xii.	An amount equal to Rs. 125 Lakhs, which is 2.5% of the total project cost (Rs. 50 Crores) shall be earmarked towards the Enterprise Social Commitment based on issues raised during the Public Hearing and needs of local people. Item-wise detailed plan with time bound action plan would be prepared as indicated by the project proponent and this plan shall be implemented. Action taken report in this regard shall be submitted to the Ministry's Regional Office.	(1) An amount of Rs. 25500 /- handed over to 10 BPL students in the month of Dec-21 & March-22 respectively. This will be continued on quarterly basis. Therefor total disburse amount is Rs. 51000/- for the period October-21 to March-22. (2) Construction of one community hall is completed at Gandhi Asram in Raja Rampur village, Haldia and expense Rs. 7.5 lakhs. Till date we have completed three community Hall out of four community hall. Total expense Rs.12.01 lakhs in this period (Oct-21 to March-22). Total cumulative expenses for the period September 2018 to March 2022:- Rs. 60.49/-Lakhs.
xiii.	The project proponent shall provide for solar light system for all common areas, street lights, villages, parking around project area and maintain the same regularly.	Six Solar street lights have been installed within project site with all necessary arrangement.
xiv.	The project proponent shall fully provide for LED lights in their offices and residential areas.	LED light has been installed throughout the plant.
xv.	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	All facilities & infrastructures has been provided as per the requirement.
PART	B – General Conditions	
i.	The project authorities must strictly adhere to the stipulations made by the West Bengal Pollution Control Board and the State Government.	Following all stipulated guideline of WBPCB & the state Government.
ii.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment Forest and Climate Change (MoEF&CC).	We will not do any further expansion or modification in the plant without prior approval of MoEF&CC.
III.	At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM10, PM2.5, SO2, NOx are anticipated in consultation with the SPCB. Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and the SPCB/CPCB once in six month.	Four AAQ monitoring stations have already been installed at different locations based on wind direction in consultation with SPCB. AAQ monitoring has been started from March 2019 on wards & the results are within limit value. Month wise summary report of AAQ is being attached for the said period in (Annexure-3).



iv.	Industrial waste water shall be properly collected treated	
	so as to conform to the standards prescribed under GSR 422 (E) dated 19th May, 1993 and 31st December, 1993 or as amended from time to time. The treated waste water shall be utilized for plantation purpose.	Industrial waste water is being collected inland pond through surface drain & utilized it for plantation & dust suppression purpose.
V.	The overall noise levels in and around the plant area shall be kept well within the standards (85 dbA) by providing noise control measures including acoustic hoods ,silencers, enclosures etc. on all sources of noise generation .The ambient noise levels should conform to the standards prescribed under EPA Rules ,1989 viz.75 db A (day time) and 70 dbA (night time).	In house Ambient noise monitoring report as well as approve 3 rd party report is being attached in (Annexure -4). Results are within limit.
vi.	Occupational health surveillance of the worker shall be done on a regular basis and records maintained as per the Factories Act	Occupational Health Surveillance programme is being done as per Factory Rules & records is being maintained as per Factories Act.
vii.	The company shall develop rain water harvesting structure to harvest the rain water for utilization in the lean season besides recharging the ground water table.	We have constructed a pond inside the plant. All rain water are collected in the pond through surface drain and utilize it for dust suppression, water sprinkling & gardening purpose.
viii.	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA /EMP report .Further the company must undertake socio —economic development activities in the surrounding village like community development programme ,educational programme ,drinking water supply and health care etc.	Complying as per EIA/EMP report.
ix.	Requisite funds shall be earmarked towards capital cost and recurring cost /annum for environment pollution control measures to implement the conditions stipulated by the Ministry Of Environment, Forest and Climate Change (MoEFCC) as well as the State Government .An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at Bhubaneswar. The funds so provide shall not be diverted for any other purpose.	Complied as per documents already submitted on 10.01.2018.
x.	A copy of clearance letter shall be sent by the proponent to concerned Panchayats, Zila Prishad / Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions / representations, if any were received while processing the proposal. The clearance letter shall also be put on the web site of the Company by the proponent.	Copy of clearance letter had already been Submitted to concern authority and it is also put on the web site of the company.
(i.	The project proponent shall upload the status of compliance of the stipulated environment clearance	Is being done.

	conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Officer of the MoEF&CC at Bhubaneswar. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM10, SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	
xii.	The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Officer of MoEF&CC, the respective Zonal Office of CPCB and the SPCB .The Regional Office of this Ministry at Bhubaneswar /CPCB/SPCB shall monitor the stipulated conditions.	Is being followed.
xiii.	The environmental statement for each financial year ending 31st March in Form- V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environmental (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office of the MoEF&CC at Bhubaneswar by e-mail.	Environmental statement report for the financial year 2021- 2022 will be submitted in Form-V before 30/09/2022. This will also be uploaded in company's website & will send to all concerned as per EC conditions.
xiv.	The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry of Environment, Forests and climate Change (MoEF&CC) AT http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance in the region of which one shall be in the vernacular language of the locality concerned and a copy of the same should be forwarded to the Regional Office at Bhubaneswar.	Already complied. Copy of which Submitted to your office on 10.01.2018.
xv.	Project authorities shall inform the Regional Office as well as the Ministry: i)The date of financial closure. ii)Final approval of the project by the concerned authorities iii) The date of commencing the land development work.	Project to be done out of internal accrual. 1) Received NOC from WBPCB valid up to 31.08.2024. 2) Received Consent to Operate from WBPCB on 30.05.19 & valid up to 31.03.2024. 3) Started on 02.04.2018.

FORMAT NO: ENV/FM/38

:	Electro St	eel (Castings Ltd. (Fe	rro Alloy Plant)	Type of Industry	:	Feri	o Allo	y Plant		
:	Kashberia	, P.(O. – Shibram Nag	ar, Haldia, Purba	Sampling Date	:	27.0	1.202	2		
	Medinipul	[-/	21635		Period of Analysis	:	29.0	1.202	2 - 29.01.2	022	
0 1	D1		D1001000000000000000000000000000000000		Date of Issue	:	31.0				
				Deviation from the	Sampling Method and	Plan	:	No	Type of Sample	:	Stack Emission
	: & I	: Kashberia Medinipur & Procedure	: Kashberia, P.1 Medinipur - 7 & Procedure :	: Kashberia, P.O. – Shibram Nag Medinipur - 721635 & Procedure : ENV/SOP/01	& Procedure : ENV/SOP/01 Deviation from the	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Sampling Date Medinipur - 721635 Period of Analysis Date of Issue & Procedure : ENV/SOP/01 Deviation from the Sampling Method and	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635 Sampling Date : Period of Analysis : Date of Issue :	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635 Sampling Date : 27.0 Period of Analysis : 29.0 Date of Issue : 31.0 & Procedure : ENV/SOP/01 Deviation from the Sampling Method and Plan :	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635 Sampling Date : 27.01.202 Period of Analysis : 29.01.202 Date of Issue : 31.01.202 & Procedure : ENV/SOP/01 Deviation from the Sampling Method and Plan : No	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635 Sampling Date Period of Analysis Date of Issue Sampling Method and Plan No Type of Sample	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635 Sampling Date : 27.01.2022 Period of Analysis : 29.01.2022 – 29.01.2022 Date of Issue : 31.01.2022 & Procedure : ENV/SOP/01 Deviation from the Sampling Method and Plan : No Type of : Sample

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

:	SEAF - I				
:	Circular		Stack (mtr.) (from	:	35.0
:	M.S.	Stack I.D.	at sampling point	:	1.80
:	Rated - 9.0 MVA Running - 9.0 MVA	Height of		:	30.0
:		Dolomite	Jili d.L.)		
:	Electrically Operated	Dolomite	Permanent Diatfor	m 0.	Ladder . Voc
impt	ion : N.A.		1 Cilianent Flation	III &	Ladder : Yes
evice	: Bag Filter	16			
	: : : : : : : : : : : : : : : : : : :	: Circular : M.S. : Rated – 9.0 MVA Running – 9.0 MVA : Melting of Coke, Coal, Mn-Ore, Quartz & : Electrically Operated Imption : N.A.	: Circular Height of G. L.) : M.S. Stack I.D. (mtr.) : Rated – 9.0 MVA Height of Running – 9.0 MVA (mtr.) (from the important of the importa	: Circular Height of Stack (mtr.) (from G. L.) : M.S. Stack I.D. at sampling point (mtr.) : Rated – 9.0 MVA Height of sampling port (mtr.) (from G.L.) : Melting of Coke, Coal, Mn-Ore, Quartz & Dolomite : Electrically Operated Permanent Platfor	: Circular Height of Stack (mtr.) (from G. L.) : M.S. Stack I.D. at sampling point (mtr.) : Rated - 9.0 MVA Height of sampling port (mtr.) (from G.L.) : Melting of Coke, Coal, Mn-Ore, Quartz & Dolomite : Electrically Operated Permanent Platform & Imption I. N.A.

D DECILITE

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
1.	Flue Gas Temperature	oC.	IS: 11255 (Part 1)	1.	
2.	Barometric Pressure	mm of Hg.	10 (11200 (14111)	1.1	94.0
2. 3.	Velocity of Gas flow	m/s	IC . 112FF (Dant 2)	1:1	760.0
4.	Quantity of Gas flow	Nm³/hr.	IS: 11255 (Part 3)	:	12.74
5.	Concentration of SO ₂		IS: 11255 (Part III)	:	93531.67
6.		mg/Nm³	IS 11255 (Part 2) 1985 RA 2003	:	148.11
0.	Concentration of NO _x	mg/Nm ³	IS: 11255 (Part 7) 2005 & ASTM D 1608-98	:	77.83
_			reapproved 2009 : Sec 11 (Vol. 11.07) : 2011		
7.	Concentration of O ₂	% (v/v)	IS 13270 1992 RA 2003		17.0
8.	Concentration of CO ₂	% (v/v)	IS 13270 1992 RA 2003	1:1	10000000
9.	Concentration of CO	%(v/v)	IS 13270 1992 RA 2003	1	1.8
10.	Moisture	%		1:1	<1.0
11.	Concentration of Particulate	mg/Nm³	Emission Control Part – III, CPCB	:	1.32
	Matter	mg/Mms	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D	:	10.29
	Matter		3685/D 3685M-98 (reapproved 2005): Sec		
Remarks			11(Vol. 3 11.07): 2011		

Reviewed By:

Inderani Bhallacherryya

INDRANI BHATTACHARYA Dy. Technical Manager, Chemical Approved By

Dr. AJOY PAUL Quality Manager

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 2529914 EL CAS

Laboratory E-mail

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 **Ph.** 033 25792889

: info@envirocheck.in / envirocheck50@gmail.com ■ Website : www.envirocheck.in

Overseas : UAE • Qatar • Netherlands

Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

FORMAT NO: ENV/FM/38

Name of the Industry	:	Electro St	eel	Castings Ltd. (Fe	erro Alloy Plant)	Type of Industry	1:	Ferr	o Allo	y Plant		
Address	: Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635					Sampling Date Period of Analysis Date of Issue	:	29.0	1.202 1.202 1.202	2 - 29.01.2	022	
Sampling Plan Sample ID No.		Procedure : ENV/68		ENV/SOP/01	Deviation from the	Sampling Method and		:	No I/21-2	Type of Sample	:	Stack Emission

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to	:	Raw Material Handling System			
Shape of Stack	:	Circular	Height of Stack (mtr.) (from G. L.)	:	30.0
Materials of Construction	:	M.S.	Stack I.D. at sampling point (mtr.)	:	0.6096
Capacity			Height of sampling port (mtr.) (from G.L.)	:	12.18
Emission Due to	:	Process Activity (Handling of Raw Materials)	(mu.) (from G.L.)		
Fuel Used Working Fuel Const	: impt	N.A.	Permanent Platfor	m & 1	Ladder : Yes
Pollution Control De	evice	: Bag Filter		_	

P DECILITE

SL. NO.	THURST LIE	UNIT	METHOD NO.		DECIH MC
1.	Flue Gas Temperature	°C	IS: 11255 (Part 1)	1.1	RESULTS 34.0
.	Barometric Pressure	mm of Hg.			760.0
i.	Velocity of Gas flow	m/s	IS: 11255 (Part 3)		22.29
	Quantity of Gas flow	Nm³/hr.	IS: 11255 (Part III)		22762.83
	Concentration of Particulate	mg/Nm³	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D		15.95
	Matter		3685/D 3685M-98 (reapproved 2005):		13.73
			Sec. 11 (Vol. 3 11.07): 2011		

Reviewed By: Endrani Bhallachoryza

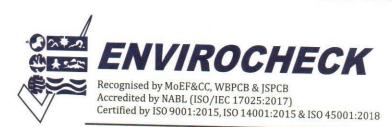
Approved By

Dr. AJOY PAUL Quality Manager

INDRANI BHATTACHARYA Dy. Technical Manager, Chemical

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141


Laboratory

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

E-mail

: info@envirocheck.in / envirocheck50@gmail.com • Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

Overseas : UAE - Qatar - Netherlands

FORMAT NO: ENV/FM/38

Name of the Industry	:	Electro Steel Castings Ltd. (Ferro Alloy Plant)	Type of Industry	:	Feri	ro Allo	y Plant		
Address	:	Kashberia, P.O. – Shibram Nagar, Haldia, Purba Medinipur - 721635	Sampling Date	:	27.0	1.202	2		
		Medilipur - 721635	Period of Analysis	:	29.0	1.202	2 - 29.01.2	022	
Sampling Plan	81	Procedure ENV/COD/O1 D :	Date of Issue		310	1.202		022	
Sample ID No.		Procedure : ENV/SOP/01 Deviation from the : ENV/68/Jan./A/III Report N	Sampling Method and			No	Type of Sample	:	Stack Emission

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to	:	D. G. – 250 KVA (Acoustic Enclose	ure attached)				
Shape of Stack	:	Circular	Height of Stack (mtr.) (from G. L.)	:	10.36		
Materials of Construction	;	M.S.	Stack I.D. at sampling point (mtr.)	:	0.1524		
Capacity	:	250 KVA	Height of sampling port		7.92		
Emission Due to		Combustion of H.S.D	(mtr.) (from G.L.)				
Fuel Used	:	H.S.D	Permanent Platfor	0			
Working Fuel Const	impt	ion : 57 litr./hr.	T et manent Platfor	III &	Ladder : Yes		
Pollution Control De	evice	: Nil					

B. RESULTS

SL. NO. PARAMETERS 1. Flue Gas Temperature
1. Flue Gas Temperature 2. Barometric Pressure 3. Velocity of Gas flow 4. Quantity of Gas flow 5. Concentration of SO ₂ 6. Concentration of CO ₂ 7. Concentration of CO ₂ 8. Concentration of CO 9. Concentration of Particum Matter

Reviewed By:

Indrani Bhallacharye

Dr. AJOY PAUL Quality Manager

Approved By

INDRANI BHATTACHARYA Dy. Technical Manager, Chemical

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory E-mail

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

: info@envirocheck.in / envirocheck50@gmail.com
Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

VIROCHECK

Recognised by MoEF&CC, WBPCB, & JSPCB Accredited by NABL (ISO/IEC 17025:2017) Certified by ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry	:	Electro Stee	l Castings Ltd. (Fe	erro Alloy Plant)	Type of Industry	:	Ferro Alloy Plant				
Address	:	Kashberia, F	.O Shibram Nag	gar, Haldia, Purba	Campling Date				5		
		Medinipur -	721635	j, randia, r drba	Sampling Date	:	29.10.2021				
	8	P	, 21055		Period of Analysis		: 30.10.2021 - 01.11.2021				
Sampling Plan & Procedure : ENV/SOP/01 Deviation from				Deviation from the	Date of Issue . 04 11 2021						
Sample ID No.		ENV/50/6		Deviation from the	Sampling Method and	Plan	1 :	No	Type of	:	Stack
pic ID No.		: ENV/50/0	JCL/A/IV	Report N	No. : ENV/50/Oct	t./TF	R(A)/	V/21-	Sample 22		Emission

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to	:	SEAF - I					
Shape of Stack	:	Circular	Height of	Stack (mtr.) (from	1:	35.0	
Materials of	:	M.S.	G. L.) Stack I.D. at sampling point				
Construction					:	1.80	
Capacity	:	Rated - 9.0 MVA	(mtr.)				
	Running – 6.6 MVA		Height of sampling port		:	30.0	
Emission Due to	1	Melting of Coke, Coal, Mn-Ore, Quartz & D	(mtr.) (from G.L.)				
Fuel Used	:	Electrically Operated	olomite				
Working Fuel Consu	mpt	ion : N.A.		Permanent Platfor	m &	Ladder : Yes	
Pollution Control De	vice	: Bag Filter				1 103	

R. RESIILTS

SL. NO.	A THUMBILL DIG	UNIT	D. RESULIS	
	Flue Gas Temperature Barometric Pressure Velocity of Gas flow Quantity of Gas flow Concentration of SO ₂ Concentration of NO _x Concentration of CO ₂ Concentration of CO ₂ Concentration of CO Moisture Concentration of Particulate Matter	0C mm of Hg. m/s Nm³/hr. mg/Nm³ mg/Nm³ % (v/v) % (v/v) %(v/v) %mg/Nm³	METHOD NO. IS: 11255 (Part 1) IS: 11255 (Part 3) IS: 11255 (Part 3) IS: 11255 (Part III) IS 11255 (Part 2) 1985 RA 2003 IS: 11255 (Part 7) 2005 & ASTM D 1608-98 reapproved 2009: Sec 11 (Vol. 11.07): 2011 IS 13270 1992 RA 2003 IS 13270 1992 RA 2003 IS 13270 1992 RA 2003 Emission Control Part – III, CPCB IS 11255 (Part – 1) 1985 RA 2003 & ASTM D 3685/D 3685M-98 (reapproved 2005): Sec 11(Vol. 3 11.07): 2011	RESULTS 84.2 756.0 11.26 84688.45 42.85 25.78 16.8 1.6 <1.0 0.95 6.0

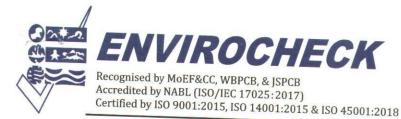
Reviewed By: Drawi Bhallocharyya

INDRANI BHATTACHARYA Dy. Technical Manager, Chemical

Approved By

Dr. AJOY PAUL Quality Manager

H.O.


: 63/B, Rastraguru Avenue, Kolkata - 700028 ■ Ph. 033 25792891 / 25497490 ■ Fax : 033 25299181 CAS

Laboratory E-mail

: 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 Ph. 033 25792889

: info@envirocheck.org / envirocheck50@gmail.com • Website : www.envirocheck.org Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

FORMAT NO: ENV/FM/38

Name of the Industry	:	Electro Ste	eel	Castings Ltd. (Fe	erro Alloy Plant)	Type of Industry	:	Fer	ro Allo	y Plant		
Address Sampling Plan		Medinipur	- /	21635	gar, Haldia, Purba	Sampling Date Period of Analysis Date of Issue	:	29.1 30.1	10.202	1 1 - 01.11.20	021	
Sample ID No.		: ENV/50			Deviation from the	Sampling Method and		:	No	Type of	:	Stack Emission

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to Shape of Stack	: D. G. – 250 KVA (Acoustic Enclos					
Materials of		Height of Stack (mtr.) (from G. L.) Stack I.D. at sampling point (mtr.) Height of sampling port		: 10.36		
Construction	: M.S.			0.1524		
Capacity	: 250 KVA					
	100 m			7.92		
Emission Due to	: Combustion of H.S.D	(mtr.) (from G.L.)				
Fuel Used	: H.S.D					
Working Fuel Consu	umption : 57 litr /hr	Permanent Platfor	m & 1	Ladder : Yes		
Pollution Control De	evice : Nil		1701	. 103		

B. RESULTS

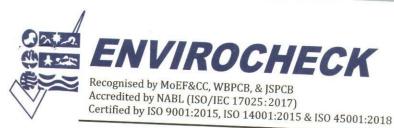
SL. NO.	PARAMETERS Flue Gas Temperature	UNIT	METHOD NO.	T	DECHUMO
2. 3. 4. 5. 6. 7. 3. 9.	Barometric Pressure Velocity of Gas flow Quantity of Gas flow Concentration of SO ₂ Concentration of CO ₂ Concentration of O ₂ Concentration of CO Concentration of Particulate Matter	0C mm of Hg. m/s Nm³/hr. mg/Nm³ mg/Nm³ % (v/v) % (v/v) %(v/v) mg/Nm³	IS: 11255 (Part 1) IS: 11255 (Part 3) IS: 11255 (Part III) IS 11255 (Part 2) 1985 RA 2003 IS: 11255 (Part 7) 2005 & ASTM D 1608-98 reapproved 2009: Sec 11 (Vol. 11.07): 2011 IS 13270 1992 RA 2003 IS 11255 (Part - 1) 1985 RA 2003 & ASTM D 3685/D 3685M-98 (reapproved 2005): Sec 11(Vol. 3 11.07): 2011		756.0 15.78 774.55 68.25 76.40 7.0 12.0 <1.0 18.50

Reviewed By: drawi Bhatlackoryy

IDRANI BHATTACHARYA Dy. Technical Manager, Chemical

Approved By:

OY PAUL Quality Manager


H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 ■ Ph. 033 25792891 / 25497490 ■ Fax : 033 25299141

Laboratory E-mail

: 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 Ph. 033 25792889

: info@envirocheck.org / envirocheck50@gmail.com • Website : www.envirocheck.org Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

FORMAT NO: ENV/FM/38

Name of the	:	Electro Steel Castings Ltd. (Ferro Alloy Plant)			10 1 ENV/114/38
Industry			Type of Industry	:	Ferro Alloy Plant
Address	:	Kashberia, P.O. – Shibram Nagar, Haldia, Purba			J Lune
		Medilipui - // 1635	Sampling Date	:	29.10.2021
	16		Period of Analysis	:	30.10.2021 - 01.11.2021
Sampling Plan	& 1	Procedure : ENV/SOP/01 Deviation from the	Date of Issue Sampling Method and I		
Sample ID No.		ENVIOLE TO THE CONTROL OF THE CONTRO	ballipling Method and	Plan	n : No Type of : Stack
bumple ID No.		ENV/50/Oct./A/VI Report No	o. : ENV/50/Oct	/TF	Sample Emission R(A)/VI/21-22
				/	((1)/ V1/21-22

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Shape of Stack	1:	Raw Material Handling System Circular			
Materials of	+	MS	Height of Stack (mtr.) (from G. L.)	:	30.0
Construction Capacity		140	Stack I.D. at sampling point (mtr.)	:	0.6096
	:	-	Height of sampling port	1:	12.18
Emission Due to Fuel Used	:	Process Activity (Handling of Raw Materials)	(mtr.) (from G.L.)		12:10
Working Fuel Consu	mnt	on · Nil	Permanent Platfo	rm &	Ladder : Yes
Pollution Control De	vice	: Bag Filter			1 103

NO. PARAMETERS	UNIT	<u>B. RESULTS</u>		
Flue Gas Temperature Barometric Pressure Velocity of Gas flow Quantity of Gas flow Concentration of Particulate Matter	oC mm of Hg. m/s Nm³/hr. mg/Nm³	METHOD NO. IS: 11255 (Part 1) IS: 11255 (Part 3) IS: 11255 (Part III) IS 11255 (Part - 1) 1985 RA 2003 & ASTM D 3685/D 3685M-98 (reapproved 2005): Sec. 11 (Vol. 3 11.07): 2011	: : : : : : : : : : : : : : : : : : : :	756.0 17.91 17530.39 16.20

Reviewed By: brani Bhallacharyya

INDRANI BHATTACHARYA Dy. Technical Manager, Chemical

Approved By:

Quality Manager

H.O.

Laboratory E-mail

: 63/B, Rastraguru Avenue, Kolkata - 700028 = Ph. 033 25792891 / 25497490 = Fax : 033 2529914 CAS : 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 Ph. 033 25792889

: info@envirocheck.org / envirocheck50@gmail.com • Website : www.envirocheck.org Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

AMBIENT AIR QUALITY

SUMMARY REPORT

October 2021 - March 2022

Electrosteel Castings Ltd.
Ferro Alloy Plant
Haldia, Kasberia, P.O. – Shivramnagar,
Pin - 721635

Electrosteel Castings Limited (Ferro Alloy Plant) Haldia, Kasberia, P.O. – Shivramnagar, Pin – 721 635 SUMMARY REPORT - OCTOBER, 2021

		Dakshin K	ashberia- So	uth side of tl	ne Factory (Ou	ıtside Factory	Premises)			
Parameters	01.10.2021	04.10.2021	07.10.2021	17.10.2021	21.10.2021	24.10.2021	27.10.2021	30.10.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	39.2	38.5	35.1	46.8	48.5	45.3	49.8	53.5	44.59	60
PM ₁₀ (μg/m3)	71.5	78.2	73.6	81.5	82.6	79.5	83.50	86.1	79.56	100
SO ₂ (μg/m3)	5.20	6.80	6.50	8.20	7.80	6.52	5.80	9.20	7.00	80
NO _x (μg/m3)	26.50	28.50	25.0	32.50	28.50	30.0	26.50	33.50	28.87	80
		М	ain Gate of F	erro Alloy P	lant (Inside Fa	actory Premis	es)			
Parameters	01.10.2021	04.10.2021	07.10.2021	17.10.2021	21.10.2021	24.10.2021	27.10.2021	30.10.2021	Avg	NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	46.2	51.6	54.2	50.1	49.5	53.1	54.8	50.1	51.2	60
PM ₁₀ (μg/m3)	86.2	91.5	92.5	87.2	80.1	85.2	86.3	80.1	86.14	100
SO ₂ (μg/m3)	8.20	9.50	10.8	11.5	7.80	8.50	7.50	7.20	8.87	80
NO _x (μg/m3)	35.0	36.20	35.0	36.50	30.00	32.50	28.50	26.50	32.52	80
		Kash	Kashberia Uttarpally (North Side) (Outside Factory Premises)							
Parameters	01.10.2021	04.10.2021	07.10.2021	17.10.2021	21.10.2021	24.10.2021	27.10.2021	30.10.2021	Avg	NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	36.5	38.2	42.6	41.5	39.2	38.5	49.8	51.2	42.19	60
PM ₁₀ (μg/m3)	73.6	78.5	83.2	80.1	78.5	76.1	84.5	86.2	80.09	100
SO ₂ (μg/m3)	5.80	6.50	7.20	6.80	6.50	6.20	8.20	8.50	6.96	80
NO _x (μg/m3)	23.50	25.0	28.2	23.5	21.8	20.0	28.5	30.0	25.06	80
		Kish	mat Shibrai	nnagar West	side (Outside	Factory Pres	nises)	-		
Parameters	01.10.2021	04.10.2021	07.10.2021	17.10.2021	21.10.2021	24.10.2021	27.10.2021	30.10.2021	Avg	NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	38.2	35.1	41.8	54.8	53.2	51.8	46.5	45.1	45.81	60
PM ₁₀ (μg/m3)	78.2	69.5	79.5	82.3	85.2	80.1	76.5	74.5	78.22	100
SO ₂ (μg/m3)	6.80	5.60	6.20	8.20	8.50	7.50	6.20	6.50	6.94	80
NO _x (μg/m3)	25.0	23.50	26.50	30.0	32.50	28.50	26.50	25.0	27.19	80

Continued page - 2

H.O. : 63/B, Rastraguru Avenue, Kolkata -700028 Ph. 033 25792891/ 25497490 Fax: 033 25299141

Laboratory : 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

E-mail : info@envirocheck.in / envirocheck50@gmail.com = Website : www.envirocheck.in

Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

Overseas : UAE • Qatar • Netherlands

SUMMARY REPORT - NOVEMBED 2021

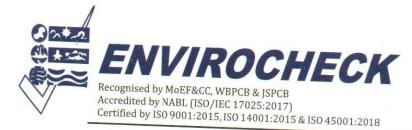
	1	C 8570.00 (3600)				OVEMBER 2				
	D	akshin Kas	hberia- Soi	uth side of t	the Factory	(Outside Fa	ctory Prem	ises)		
Parameters	01.11.2021	03.11.2021	09.11.2021	12.11.2021	15.11.2021	19.11.2021	22.11.2021	25.11.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	43.2	40.1	42.8	49.2	46.8	42.5	42.8	44.5	43.99	60
PM ₁₀ (μg/m3)	83.6	80.1	79.2	86.5	85.2	82.5	84.2	80.1	82.67	100
SO ₂ (μg/m3)	8.25	7.86	7.20	8.50	8.20	8.10	9.25	8.15	8.19	80
NO_x (µg/m3)	28.50	29.20	26.58	32.50	31.85	30.00	35.8	31.50	30.74	80
		Mair	Gate of Fe	rro Alloy P	lant (Inside	Factory Pr	emises)		1	
Parameters	01.11.2021	03.11.2021	09.11.2021	12.11.2021	15.11.2021	19.11.2021	22.11.2021	25.11.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	52.6	54.1	50.1	52.8	49.5	42.8	41.6	45.8	48.66	60
PM ₁₀ (μg/m3)	86.2	89.5	81.5	83.2	79.5	83.2	82.5	80.2	83.22	100
SO ₂ (μg/m3)	6.80	7.20	8.56	6.25	7.82	7.58	8.20	7.60	7.50	80
NO _x (μg/m3)	32.50	35.00	30.00	31.85	26.50	30.00	26.50	28.25	30.07	80
		Kashbe	ria Uttarpa	lly (North	Side) (Outsi	de Factory	Premises)			
Parameters	01.11.2021	03.11.2021	09.11.2021	12.11.2021	15.11.2021	19.11.2021	22.11.2021	25.11.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	39.5	46.8	42.8	48.2	46.1	42.8	39.2	38.5	42.99	60
PM ₁₀ (μg/m3)	79.2	81.5	82.5	83.6	85.1	80.1	78.2	76.5	80.84	100
SO ₂ (μg/m3)	6.85	7.20	6.50	8.25	8.20	6.80	6.50	6.20	7.06	80
NO _x (μg/m3)	26.20	28.50	23.50	32.50	31.85	30.00	28.50	25.00	28.26	80
		Kishma	t Shibramn	agar West	side (Outsi	de Factory F	remises)			
Parameters	01.11.2021	03.11.2021	09.11.2021	12.11.2021	15.11.2021	19.11.2021	22.11.2021	25.11.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	46.2	40.8	39.2	45.8	49.1	48.5	43.2	45.1	44.74	60
PM ₁₀ (μg/m3)	82.5	80.1	78.5	79.2	86.5	85.1	80.2	83.5	81.95	100
SO ₂ (μg/m3)	8.20	7.85	7.22	6.85	8.50	7.20	8.50	8.25	7.82	80
NO _x (μg/m3)	28.50	26.20	30.00	28.50	32.85	32.50	31.85	35.00	30.67	80

Continued page - 3

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory


: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

E-mail

: info@envirocheck.in / envirocheck50@gmail.com • Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

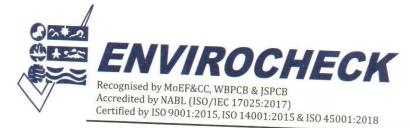
Overseas : UAE • Qatar • Netherlands

CAS7

			SU	MMARY	REPORT -	- DECEMB	FR 2021			
		Dakshii	n Kashberia-	South side	of the Factor	y (Outside Fac	ctory Premise	es)		
Parameters	03.12.2021	07.12.2021	10.12.2021	13.12.2021	16.12.2021	22.12.2021	25.12.2021	28.12.2021	Avg	Limit as per NAA Standards (24 hours) (Schedul VII)
PM _{2.5} (μg/m3)	46.2	45.8	42.6	48.5	45.2	43.8	49.5			
PM ₁₀ (μg/m3)	78.6	76.5	72.8	79.5	76.2	75.1	80.1	45.2	45.85	
SO ₂ (μg/m3)	7.25	7.85	7.65	8.50	7.20	7.48	7.80	75.2	76.75	The second secon
NO _x (μg/m3)	26.5	29.85	26.50	The second second		31.85		6.85	7.57	
			Main Gate of			e Factory Prei	32.50	30.0	30.0	80
Parameters	03.12.2021	07.12.2021	10.12.2021	13.12.2021	16.12.2021	22.12.2021	25.12.2021	28.12.2021	Avg	Limit as per NAA(Standards (24 hours) (Schedule VII)
PM _{2.5} (μg/m3)	48.20	45.65	51.20	50.12	50.15	48.50	49.20	45.0	48.5	60
PM ₁₀ (μg/m3)	82.50	80.15	85.20	82.65	86.50	81.20	88.23	81.50	83.49	100
SO ₂ (μg/m3)	8.20	7.50	8.50	8.25	8.52	9.25	9.50	7.20		
NO _x (μg/m3)	32.50	30.0	35.0	31.85	32.50	35.0	32.85	28.50	8.36	80
		Kasl	hberia Uttar	pally (North	Side) (Outsi	de Factory Pr	emises)	20.50	32.27	.80
Parameters PM _{2.5} (µg/m3)	03.12.2021	07.12.2021	10.12.2021	13.12.2021	16.12.2021	22.12.2021	25.12.2021	28.12.2021	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM ₁₀ (μg/m3)	78.20	42.50	49.25	51.20	52.85	45.20	46.25	45.85	47.04	60
SO ₂ (μg/m3)		76.50	81.25	84.50	86.85	80.12	81.50	83.25	81.52	100
NO _x (μg/m3)	6.50 25.0	6.25	7.50	7.25	6.80	7.50	7.80	8.25	7.23	80
Mox (μg/III3)	25.0	23.50	25.65	24.80	26.50	28.20	30.0	31.85	26.94	80
Parameters		KISHI	nat Shibram	inagar West	side (Outsid	e Factory Pre	mises)			
Parameters	03.12.2021	07.12.2021	10.12.2021	13.12.2021	16.12.2021	22.12.2021	25.12.2021	28.12.2021	1	Limit as per NAAQ Standards (24 hours) (Schedule VII)
M _{2.5} (μg/m3)	45.20	48.25	42.85	40.18	42.85	45.85	43.25	42.50	12.07	60
M ₁₀ (μg/m3)	76.25	81.50	78.50	72.50	73.65	78.5	75.20	79.50	43.87	60
6O ₂ (μg/m3)	6.80	8.20	7.20	6.85	6.20	8.25	7.50	8.20	76.95	100
iO _x (μg/m3)	26.50	31.25	30.0	26.85	25.0	32.50	30.0	31.85	7.4	80
				11	Parket Maria		0.00	21.02	29.24	80

Continued page - 4

Ferro Alley


H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory E-mail

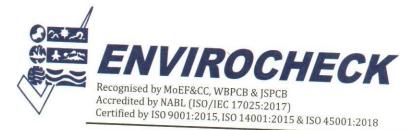
: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

: info@envirocheck.in / envirocheck50@gmail.com ■ Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

	I	akshin Ka	shberia- So	outh side of	EPORT - JAN	(Outside E	22 actory Prem			
Parameters	05.01.2022	08.01.2022	11.01.2022	14.01.2022	17.01.2022	20.01.2022	24.01.2022	27.01.2022	Avg	Limit a per NAA Standard (24 hour (Schedu
+PM _{2.5} (μg/m3	51.6	50.8	46.5	48.2	53.2	50.8	F2.0			VII)
PM ₁₀ (μg/m3)	83.2	80.1	78.5	79.2	85.2	81.2		51.8		
SO ₂ (μg/m3)	6.80	7.50	6.50	7.20	8.20	7.20		82.5	0110	100
NO_x (µg/m3)	30.0	32.50	28.50			32.50		7.20		80
		Maii	n Gate of Fe		lant (Inside	Factory Pr	30.00	32.50	31.56	80
Parameters	27	0.000 0.00		Opener I		Taccory 11	Cilises		Avg	Limit
	05.01.2022	08.01.2022	11.01.2022	14.01.2022	17.01.2022	20.01.2022	24.01.2022	27.01.2022	Avg	Limit as per NAA(Standard (24 hours (Schedule
PM _{2.5} (μg/m3)	53.2	50.1	54.8	52.1	50.2	48.6	53.8		200	VII)
PM ₁₀ (μg/m3)	82.5	80.6	86.5	82.6	81.5	76.2	84.5	54.8	52.2	60
SO ₂ (μg/m3)	6.80	9.20	10.50	8.50	11.80	6.50	12.50	86.2	82.57	100
NO_x (µg/m3)	30.0	32.50	35.0	31.80	32.50	30.0	35.0	10.0	9.47	80
		Kashbei	ria Uttarpa	lly (North S	ide) (Outsid	e Factory F	Premises)	31.80	32.32	80
Parameters	05.01.2022	08.01.2022	11.01.2022	14.01.2022	17.01.2022	20.01.2022	24.01.2022	27.01.2022	Avg	Limit as per NAAQ Standards (24 hours) (Schedule
² M _{2.5} (μg/m3)	49.2	48.5	45.8	51.8	50.8	53.2	51.8	52.3	50.42	60 VII)
² M ₁₀ (μg/m3)	80.2	81.6	78.2	82.5	79.2	86.5	80.1	82.5	81.35	100
SO ₂ (μg/m3)	8.50	6.80	7.50	8.20	6.80	11.80	10.50	11.20	8.91	80
NO _x (μg/m3)	32.50	30.0	28.50	30.00	28.50	35.00	32.50	31.50	31.06	80
-		Kishmat	Shibramna	igar West si	ide (Outside	Factory Pr	emises)		31.00	
arameters	05.01.2022	08.01.2022	11.01.2022	14.01.2022	17.01.2022	20.01.2022	24.01.2022	27.01.2022	Avg	Limit as per NAAQ Standards (24 hours) (Schedule
1 _{2.5} (μg/m3)	49.2	46.5	48.2	51.8	50.2	46.5	45.8		40.00	VII)
M ₁₀ (μg/m3)	80.5	76.2	78.5	81.3	80.5	76.8		48.5	48.33	60
O ₂ (μg/m3)	6.80	6.50	7.20	8.50	8.20	6.50	75.2	79.5	78.56	100
	26.50	25.0	30.0	31.50	575.71 1 U /l	0.50	6.80	7.20	7.21	80

Continued page - 5

H.O.


: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory E-mail

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

: info@envirocheck.in / envirocheck50@gmail.com ■ Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

		Dalrahi IZ		SUMMAR	Y REPORT -	FEBRUARY	7, 2022			
		Daksnin Ka	ashberia-	South side	of the Facto	ry (Outside	Factory Pre	emises)		
Parameters	01.02.202	04.02.2022	09.02.2022	12.02.2022	15.02.2022	18.02.2022	21.02.2022	24.02.2022	Avg	Limit as po NAAQ Standard (24 hours (Schedule
PM _{2.5} (μg/m3)		45.20	38.20	40.2	39.20	41.8				VII)
PM ₁₀ (μg/m3)	80.2	83.5	76.2	78.5		83.6		49.5		
SO ₂ (μg/m3)	8.20	7.50	6.80	6.50		9.50		85.6		
NO _x (μg/m3)	26.50	25.0	23.80	25.0		-		8.50		
		Mai	in Gate of		Plant (Insi	de Factory	Promises)	30.0	27.07	80
Parameters	01.02.2022	04.02.2022	09.02.2022	12.02.2022	15.02.2022	18.02.2022	21.02.2022	24.02.2022	Avg	Limit as per NAAQ Standards (24 hours) (Schedule
PM _{2.5} (μg/m3)	43.8	42.5	39.2	48.5	43.8	42.6	40.6	51.2	44.02	VII)
PM ₁₀ (μg/m3)	86.5	82.1	80.6	87.5	85.1	84.2	83.6	85.1	84.34	3
SO ₂ (μg/m3)	8.20	7.50	6.20	8.50	7.60	6.80	5.20	8.20	7.27	D. HOTE WAY
NO _x (μg/m3)	26.50	25.0	23.80	29.50	25.0	24.50	22 50	32.80	26.32	80
		Kashbe	ria Uttarp	ally (North	Side) (Out	side Factor	y Premises)	32.00	20.32	80
Parameters	01.02.2022	04.02.2022	09.02.2022	12.02.2022	15.02.2022	18.02.2022	21.02.2022	24.02.2022	Avg	Limit as per NAAQ Standards (24 hours) (Schedule
PM _{2.5} (μg/m3)	43.5	42.8	48.5	46.2	49.1	51.2	43.6			VII)
PM ₁₀ (μg/m3)	80.2	81.5	86.2	84.5	87.2	88.5		47.5	46.55	60
SO ₂ (μg/m3)	6.80	7.50	8.20	8.50	9.20	8.50	80.6	87.2	84.49	100
$NO_x (\mu g/m3)$	26.50	25.0	26.50	28.50	30.0	26.80	7.20	7.50	7.92	80
		Kishmat	Shibramı		side (Outsi	de Factory	28.50	26.20	27.25	80
Parameters	01.02.2022	04.02.2022	09.02.2022	12.02.2022	15.02.2022	18.02.2022	21.02.2022	24.02.2022	Avg	Limit as per NAAQ Standards (24 hours)
M _{2.5} (μg/m3)	43.2	48.5	43.2	51.8	1112					(Schedule VII)
² M ₁₀ (μg/m3)	83.2	85.1	80.2	89.1	46.5	45.8	42.8	48.2	46.25	60
6O ₂ (μg/m3)	9.20	8.50	7.80	9.50	84.5	83.6	84.5	85.2	84.42	100
NO _x (μg/m3)	35.0	32.80	30.0	36.50	7.80	7.20	7.50	8.20	8.21	80
			3010	30.30	32.50	30.0	32.50	35.0	33.04	80

Continued page - 6

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

E-mail : info@envirocheck.in / envirocheck50@gmail.com ■ Website : www.envirocheck.in Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

NVIROCHECK

Recognised by MoEF&CC, WBPCB & JSPCB Accredited by NABL (ISO/IEC 17025:2017) Certified by ISO 9001:2015, ISO 14001:2015 & ISO 45001:2018

		Dakshin Ka	shberia- So	MMARY REP uth side of th	ORT - MAF	RCH, 2022				
Parameter	04.03.2022	07.03.2022	10.03.2022						Av	g Limit as p NAAQ Standard (24 hours
PM _{2.5} (μg/m ³	3) 42.5	100000		-	,		25.	27.((Schedul
PM ₁₀ (μg/m3	The second of th	1011	011	1012			5 40.0	6 41.	8 44.0	VII) 5 60
SO ₂ (μg/m3)	6.80				. 012			71.	5 75.6	9 100
NO _x (μg/m3)	30.0		0.00	0.20	0.00			5.2	0 5.75	5 80
				rro Alloy Pla	28.5	26.5	23.8	25.0	0 27.4	9 80
Parameters	7		1	TO Alloy Fla	nt (inside F	actory Pre	emises)			
PM _{2.5} (μg/m3)	04.03.202	07.03.2022	10.03.2022	14.03.2022	19.03.2022	22.03.2022	25.03.2022	27.03.2022	Avg	NAAQ Standards (24 hours) (Schedule
The state of the s	11.0	48.2	45.6	46.2	41.8	43.5	40.2	43.8	3 43.85	VII) 60
PM ₁₀ (μg/m3)	82.5	86.2	81.2	80.5	73.2			-		
SO ₂ (μg/m3)	6.50	7.20	6.80	5.80	6.20	10.0				7,500,000
NO _x (μg/m3)	30.0	32.50	35.0	31.80		0.00		-		80
		Kashber		y (North Side	35.0	31.80	32.50	35.0	32.95	80
Parameters	04.03.2022	07.03.2022	10.03.2022	14.03.2022	19.03.2022	22.03.2022	25.03.2022	27.03.2022	Avg	Limit as per NAAQ Standards (24 hours)
PM _{2.5} (μg/m3)	41.2	43.8	45.6				75	27		(Schedule
PM ₁₀ (μg/m3)	74.5	73.2	78.5	49.2	48.5	38.2	52.8	46.5	45.72	VII) 60
SO ₂ (μg/m3)	6.20	5.80	5.20	81.2	80.5	72.6	84.5	79.2	78.02	100
NO _x (μg/m3)	26.50	25.0	23.50	6.50	6.20	6.50	7.20	6.50	6.26	80
	A. 14 S. 2000	1	Shibramnag	25.0 ar West side	30.0	26.80	31.80	30.0	27.32	80
Parameters	2			ar west side	(Outside F	actory Pre	mises)			
	04.03.2022	07.03.2022	10.03.2022	14.03.2022	19.03.2022	22.03.2022	25.03.2022	27.03.2022	Avg	NAAQ Standards (24 hours)
M _{2.5} (μg/m3)	36.2	38.5	41.6	42.5	51.8			SAMUE .		(Schedule VII)
M ₁₀ (μg/m3)	68.2	71.5	78.2	76.5		50.2	49.2	45.8	44.47	60
O ₂ (μg/m3)	6.80	7.20	6.20	5.80	81.2 7.80	82.5	79.2	75.1	76.55	100
O _x (μg/m3)	30.0	32.50	31.80	25.0	35.0	7.20	6.50	5.80	6.66	80
Da	te : 29.03.	2022		20.0	33.0	32.50	30.0	26.50	30.41	80

Authorized Signatory:

H.O.

: 63/B, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792891/ 25497490 ■ Fax : 033 25299141

Laboratory

: 189, 190 & 192, Rastraguru Avenue, Kolkata -700028 ■ Ph. 033 25792889

: info@envirocheck.in / envirocheck50@gmail.com ■ Website : www.envirocheck.in E-mail Branch Office : Siliguri ■ Haldia ■ Durgapur ■ Dhanbad ■ Gangtok ■ Port Blair ■ Dehradun ■ New Delhi

Electro Steel Castings Limited (Ferro Alloy Plant) Name of the Industry/Factory/Company

Works - Kashberia, P.O - Shivramnagar, Haldia, District - PurbaMedinipore, Pin Address II.

-721635

04/03/2022 **Date of Sampling**

10/03/2022 **Reporting Date** IV.

407/EC/M/N/21-22 Report No V.

IS:9989 - 1981 **Method No** VI.

20 Minutes **Time of Duration of Noise** VII. 4feet **Height from Ground Level**

3 meter **Distance of Source** IX.

Ferro Alloy Plant Type of Industry X. Mr. Kaushik Podder Sample Monitoring by

RESULT OF AMBIENT NOISE LEVEL STUDY

		9,20 1.1.		IV	ONITOR	ING IN FE	RRO-ALLO	DY PLANT	(DAY TIN		Market Pro-Called			Average	Leq
SI. No.	Location	7:00 A.M	9:00 A.M	53 11:00 A.M	S4 1:00 P.M	S5 3:00 P.M	56 5:00 P.M	6:00 P.M	58 7:00 P.M	59 8:00 P.M	9:00 P.M	Min dB(A)	Max dB(A)	dB(A	dB(A)
1.	Main Gate (West Side)	58.2	59.4	60.2	61.2	63.0	62.8	62.6	61.8	59.9	60.6	58.2	63.0	60.97	61.37
2.	East Side Boundary Wall	60.2	62.4	63.4	62.8	68.2	63.1	64.4	63.2	62.4	63.7	60.2	68.2	63.38	63.88
۷.					50.4	65.0	64.2	66.2	65.2	66.0	64.4	63.0	68.4	65.8	66.13
3.	South Side Boundary Wall (Towards COP Coal Shed)	63.0	68.2	67.4	68.4	65.0	64.2	00.2	03.2	00.0				44.0	64.26
4.	North Side Boundary Wall (Towards Pattern Shop)	64.0	64.8	65.4	63.4	65.2	63.6	64.2	63.1	65.4	63.7	63.1	65.4	64.3	64.36
5.	Limit	75													

XI.

: 63/B, Rastraguru Avenue, Kolkata - 700028 [033-25792891/25497490, Fax : 033-25299

Branch Office: MIG, R-3 Housing Colony, Dhanbad, Pin - 826001, State - Jharkhand : info@envirocheck.in/envirocheck50@gmail.com / Website : www.envirocheck.in

Branch Office : • Siliguri • Haldia • Durgapur • Dhanbad • Gangtok • Port Blair • Dehradun • New Delhi

. . IIAF . Oatar . Netherlande

ENVIROCHECK

مردر الإمارات العالمي المعتملة الإمارات العالمي المعتملة الإمارات العالمية المعتملة المعتملة

Recognised by MoEF&CC, WBPCB & JSPCB Accredited by NABL (ISO/IEC 17025:2017) Certified by ISO 9001:2015, ISO 14001:2015 & ISO 45001 : 2018

		* 1		M	ONITORII	NG IN FER	RO-ALLO	Y PLANT (NIGHT TI	ME)					
SI. No.	Location	S1 10:00	\$2 10:30	53 11:00	54 11:30	S5 12:00 P.M	\$6 12:30 A.M	S7 1:00 A.M	S8 1:30 A.M	\$9 2:00 A.M	\$10 2:30 A.M	Min dB(A)	Max dB(A)	Average dB(A	Leq dB(A)
		P.M	P.M	P.M	P.M 57.1	58.4	60.2	61.4	59.5	61.6	60.7	55.8	61.6	58.8	59.25
1.	Main Gate (West Side)	55.8	56.2	56.8	57.1	36.4	00.2	01.4	33.3	01.0					4 4 4 4
2.	East Side Boundary Wall	62.1	64.2	61.2	60.7	61.6	63.4	62.7	62.4	63.0	63.9	60.7	64.2	62.5	62.65
		62.0	62.4	62.1	61.0	61.7	63.1	61.6	62.4	62.0	61.5	61.0	63.1	62.1	62.13
3.	South Side Boundary Wall (Towards COP Coal Shed)	63.0	62.4	62.1	61.0	01.7	03.1	01.0			146		60.4	62.4	62.51
4.	North Side Boundary Wall (Towards Pattern Shop)	60.1	63.4	62.4	63.1	63.4	62.8	61.7	61.9	62.0	63.3	60.1	63.4	62.4	62.51
5.	Limit	70													
					* * Mean		Equivale		ınd Ener	gy					
	Secretary American	Part 1				Lim	it in Leq	dB(A)			Day	lime		Night Tim	е
Cate	gory Area										dB			dB(A)	
	British Andrews		Marie Comment	2088				BOAT TO THE REAL PROPERTY.			7			70	
	dustrial Area	<u> </u>					200				6	5		55	
B. Co	ommercial Area		70								5	1823		45	
C. Re	esidential Area											0		40	
D. Si	lence Zone														
		**Day Ti	me is re	ckoned i	n betwee	en					*	*Night Time	e is reckon 0 P.M & 6:	ed in betwee	n e

Report Print Date: 10/03/2022

Authorized Signatory with Stamp

1/00/

Dr. ATOY PAUL

>End of Report<

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Branch Office : MIG, R-3 Housing Colony, Dhanbad, Pin - 826001, State Jharkhand

Email : info@envirocheck.in/envirocheck50@gmail.com / Website : www.envirocheck.in

Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

VIROCHIECK

TEST REPORT

Electro Steel Castings Limited (Ferro Alloy Plant) Name of the Industry I.

Works - Kashberia, P.O - Shivramnagar, Haldia, District - PurbaMedinipore, Pin

-721635

Date of Sampling III.

04/01/2022

IV. **Reporting Date** Report No V.

Accredited by NABL (ISO/IEC 17025, 2017)

ENV/07/Dec./N/21-22

27/12/2021

VI. **Method No**

Address

II.

XI.

IS:9989 - 1981

Duration of Noise VII.

20 Minutes

Height from Ground Level VIII.

4feet

Distance of Source IX.

3 meter **Ferro Alloy Plant**

Type of Industry X. Sample Monitoring by

Mr. Koushik Podder

RESULT OF AMBIENT NOISE LEVEL STUDY

					MONITO	KING IN	EKKU-AL		IT (DAY T					Average	Leq
SI. No.	Location	51 7:00 A.M	9:00 A.M	S3 11:00 A.M	S4 1:00 P.M	S5 3:00 P.M	56 5:00 P.M	57 6:00 P.M	58 7:00 P.M	8:00 P.M	9:00 P.M	Min dB(A)	Max dB(A)	dB(A	dB(A)
1.	Main Gate (West Side)	60.1	61.4	62.3	61.6	62.0	66.7	61.8	62.8	61.6	61.2	60.1	66.7	62.15	64.55
2.	East Side Boundary Wall	62.8	62.1	62.4	67.5	64.2	63.4	64.8	62.7	63.8	64.3	61.5	67.5	63.80	65.46
3.	South Side Boundary Wall (Towards COP Coal Shed)	62.7	62.3	63.4	62.8	62.1	68.7	64.0	64.6	63.7	62.9	62.1	68.7	63.72	66.55
4.	North Side Boundary Wall (Towards Pattern Shop)	64.0	64.1	64.2	63.7	63.2	63.1	63.0	62.9	64.79	63.5	62.9	64.79	63.46	64.79
5.	Limit	75													

H.O. Laboratory Email

: 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-252907 : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

: info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org · Siliguri · Haldia · Durgapur · Dhanbad · Gangtok · Port Blair · Dehradun · New Delhi

ENVIROCHECK

Approved By:

Quality Manager

Kol - 28

Recognised by MoFF&CC, WBPCB & ISPCB Accredited by NABL (ISO/IEC 17025-2017) Certified by ISO 9001-2015 ISO 14001-2015 & ISO 45001-2018

		THE REAL PROPERTY.					NOISE L			DAE)			TOUGH PLANT		
SI. No.	Location	S1 10:00 P.M	S2 10:30 P.M	S3 11:00 P.M	S4 11:30 P.M	S5 12:00 P.M	S6 12:30 A.M	\$7 1:00 A.M	\$8 1:30 A.M	S9 2:00 A.M	\$10 2:30 A.M	Min dB(A)	Max dB(A)	Average dB(A	Leq dB(A)
1.	Main Gate (West Side)	55.9	56.4	57.7	57.1	56.1	58.6	61.5	56.9	54.6	55.8	55.8	59.1	57.06	57.76
2.	East Side Boundary Wall	58.4	58.7	61.5	59.8	60.4	59.0	63.7	60.1	62.1	59.8	58.4	63.7	60.35	61.81
3.	South Side Boundary Wall (Towards COP Coal Shed)	61.3	61.5	61.9	63.4	61.5	60.9	61.8	62.5	61.1	64.5	60.9	64.5	62.04	63.06
4.	North Side Boundary Wall (Towards Pattern Shop)	60.2	60.7	61.4	61.8	62.4	64.4	63.7	63.1	63.8	64.0	60.2	64.4	62.55	62.79
5.	Limit	70			* * Mean		Equivale		ınd Ener	gy			A 1800 S		
Cate	gory Area					Lim	it in Leq	ав(А)			Day 7			Night Tim dB(A)	e
A. In	dustrial Area										7	5		70	
B. Co	ommercial Area										6	5		55	
C. Re	esidential Area										5	5		45	
D. Si	lence Zone										5	0		40	
		**Day Ti		ckoned i		en					**		e is reckon	ed in betwee	n e

>End of Report<

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299 141

Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

Email : info@envirocheck.org / envirocheck50@gmail.com / Website : www.envirocheck.org

Branch Office : * Siliguri * Haldia * Durgapur * Dhanbad * Gangtok * Port Blair * Dehradun * New Delhi

piant and a contract of the co

		NOISE MO	NITORIN	G		Annex	ure-4
	INTERN	AL AMBIENT N	IOISE MONITO	RING IN FERRO	-ALLOY PLANT	(Day Time)	ga Artikomo (1997) y
SI No					ISE LEVEL - db(A		
1	Month	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
2	Date & Time	21.10.2021 (10am-10.30am)	22.11.2021 (11am-11.30am)	20.12.2021 (10am- 10.30 am)	27.01.2022 (11 am -11.30 am)	26.02.2022 (10 am to 10.30 am)	10.03.2022 (9.30 am-10.00am)
3	LOCATION						
Α	Main Gate (West Side)	71	69	62	64	65	62
В	East side Boundary wall	69	71	65	66	67	62
С	Near Furnace building (south side boundary wall)	68	72	62	61	64	67
D	North Side Boundary wall (Towards Pattern Shop)	70	69	64	65	66	65
4	LIMIT				75		

	INTERNAL	AMBIENT N	DISE MONITO	RING IN FERRO	-ALLOY PLANT	(Night Time)	
SI. No.					DISE LEVEL - db(A		
1	Month	Oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Mar-22
2	Date & Time	21.10.2021, (11pm-11.30pm)	22.11.2021 (11pm-11.30pm)	20.12.2021 (11pm-11.30 pm)	27.01.2022 (11 pm -11.30 pm)	26.02.2022 (11 pm - 11.30 pm)	10.03.2022 (11 pm -11.30pm)
3	LOCATION						
A	Main Gate (West Side)	67	68	62	61	62	60
В	East side Boundary wall	66	65	65	64	63	64
С	Near Furnace building (south side boundary wall)	63	67	62	61	62	63
D	North Side Boundary wall (Towards Pattern Shop)	66	67	64	63	65	63
4	LIMIT				70		

