ELECTROSTEEL CASTINGS LIMITED

Vill: Kashberia, P. O.: Shibramnagar, Haldia, Dist.: Purba Medinipur 721 635, India

Tel: 03224 277 721, Fax: 03224 278107 CIN: L27310OR1955PLC000310 Web: www.electrosteelcastings.com

Date: 29/05/2020

Ref: ECL/MOEFCC/FA/Haldia/01/20-21

To
Mr. P.Suresh Babu
Deputy Director(S),
Ministry of Environment, Forest & Climate Change,
Eastern Regional Office,
A/3, Chandrasekharpur,
Bhubaneswar – 751023.

Ref: EC Letter No.-J-11011/02/2016-IA-II(I), dated 12.04.2017.

Sub: Half Yearly Compliance Report of the conditions of Environmental Clearance issued by Ministry of Environment & Forest, New Delhi for Proposed installation of the Ferro Alloy Plant through setting up of 1X6MVA & 1x9MVA submerged Are Furnace for production of Ferro Manganese (38,156TPA) or Silico Manganese (27,109 TPA) or Ferro Silicon (10,421 TPA) by M/s- Electrosteel Castings Ltd, Located at Haldia, Dist –Purba Medinipur, West Bengal for the **Period October-19 to March-20.**

Respected Sir,

This has reference to the Environmental Clearance letter no-J-11011/02/2016-IA-II(I), dated 12.04.2017 issued by Ministry of Environment, Forest & Climate Change, New Delhi.

We enclose herewith Compliance Report for the Period of October-19 to March-2020 for your perusal.

In this period, 9MVA Submerge Are Furnace has been taken force shut down due to Pandemic of Covid-19 from 23.03.2020 onwards.

This is for your information.

Thanking you, Yours faithfully,

For ELECTROSTEEL CASTINGS LIMITED,

(A. K. Dey)

Sr. Vice President

Enclo: a) EC Compliance Report-(Annexure-1).

- b) Report of Stack Monitoring (Annexure-2).
- c) Report of AAQM (Annexure-3).
- d) Report of Ambient Noise (Annexure-4).
- e) Report of Neurological & Periodical Health check-up (Annexure-5).

*É***LECTROSTEEL CASTINGS LIMITED**

Vill : Kashberia, P. O. : Shibramnagar, Haldia, Dist. : Purba Medinipur 721 635, India

Tel: 03224 277 721, Fax: 03224 278107 CIN: L27310OR1955PLC000310 Web: www.electrosteelcastings.com

CC: - 1) Regional Director,
Central pollution control board,
Southend conclave, Block 502,
5th & 6th floor 1582 Rajdanga main road,
Saratpark, Bose pukur, Kasba.
Kolkata-700107.

 The Asst. Environmental Engineer & in- charge. West Bengal Pollution Control Board, Haldia Regional Office, Super Market Building, Durgachak, Medinipur (East)-721602.

ENVIRONMENT CLEARANCE SIX MONTHLY COMPLIANCE REPORT (FROM OCTOBER-2019 TO MARCH -2020)

Project Name :- Proposed installation of the Ferro Alloy Plant through setting up of 1×6 MVA & 1×9 MVA submerged Arc Furnace for production of Ferro Manganese (38,156 TPA) or Silico Manganese (27,109 TPA) or Ferro Silicon (10,421 TPA) by M/s. Electrosteel Castings Ltd., located at Haldia, Dist. Purba Medinipur, West Bengal.

Environment Clearance: J-11011/02/2016-IA-II (I), dated 12.04.2017

SL No.	CONDITION OF ENVIRONMENTAL CLEARANCE	STATUS OF COMPLIANCE
PAR	T A- Specific Conditions	
i.	The project proponent should install 24x7 air monitoring devices to monitor air emission, as provided by CPCB and submit report to Ministry and its Regional Office	OCEMS has been installed in two stacks one is connected with Furnace stack & another one is connected with raw material handling stack. OCEMS connectivity of Furnace bag filter stack with CPCB server through M/s- Forb Marshal has been completed. Now real time online data is available in CPCB web portal.
ii.	Bag filters to be installed to reduce the emission of Particulate Matter (PM). PM emission should not exceed 100 mg/m3. Gaseous emission levels including secondary fugitive emissions from all the sources shall be controlled within the permissible limits which have been most recently prescribed by the Ministry and regularly monitored. Guidelines/Code of Practice issued by the CPCB should also be followed.	Two bag filters have been installed. One is attached with the 9MVA Submerged Electric Arc Furnace (SEAF) & another with raw material handling system. Stack monitoring report of CPCB approved 3 rd party is attached (Annexure-2) & the results are within the limit.
iii.	Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.	Is being followed and records maintained.
iv.	Neurological Evaluation of workers exposed to Manganese should be monitored annually and the report should be submitted to the Ministry of Environment, Forest and Climate Change and its Regional Office.	Is being followed and records maintained. (Annexure-5)
v.	Measures shall be taken to reduce PM levels in the ambient air. Stack of adequate height & diameter with continuous stack monitoring facilities for all the stacks should be provided. In addition, sufficient air pollution control devices viz. bag house, bag filters etc. should be provided.	Following measures have been taken to reduce PM level in the ambient air. i) Two Stationary sprinklers & one mobile water sprinkler have been deployed for dust suppression. ii) Installed two stacks of adequate height & diameter with continuous stack monitoring facility in both stack. All stacks are connected with suitable PC device (Bag filter).

		Ad-mate dust outrastics quetom
ıi.	Dust extraction system comprising of pulse jet type bag filter, centrifugal fan and motor, duct work including suction hoods, dust supports, stack, duct hopper, rotary air lock valves etc. should be installed to control the primary and secondary emission	Adequate dust extraction system comprising of required equipment has been installed to control the primary and secondary emission.
ii.	Water sprinkling arrangements as well as dry fog system to control fugitive emission shall put up. Water sprinkling should be carried out at the raw material stockyard to control fugitive dust emissions.	Stationary water sprinklers, mobile water sprinkler & Dry Fog System have been installed to control fugitive emissions. One Mobile water sprinkler has been provided to carry out water sprinkling in the raw material yard to control fugitive emission.
/iii.	Efforts should be made to use maximum water from the rain water harvesting sources .If needed ,capacity of the reservoir shall be enhanced to meet the maximum water requirement .Only balance water requirement shall be met from others .Use of air cooled condensers shall be explored and closed circuit cooling system shall be provided to reduce water consumption. Water requirement should be modified accordingly	One rain water harvesting tank has been constructed to use rain water. Close circuit cooling system has been provided to reduce water consumption.
x.	10-15 m wide green belt should be developed all along the boundary of the plant and in all 33% of the area should be developed green by planting native and broad leaved species in consultation with local DFO and local communities as per the CPCB guidelines. The entire plantation work should be completed in 3 years.	Work for development of green belt has already been started with consultation with Forest Range Office at Balughata under Nandakumar forest range office and local communities. In this period we have planted different fruits sapling along the boundary wall & work is continuing.
х.	All the Ferro alloy slag shall be used in the preparation of building materials.	All Ferro Alloy Slags are being used for road making & construction purpose only.
xi.	The Company shall submit within three months their policy towards Corporate Environment Responsibility which shall inter-alia address i) Standard operating process/procedure to being into focus any infringement/deviation/violation of environmental or forest norms/conditions,	Environmental policy has been already Submitted to MoEFCC on 10.01.2018. Standard operating procedure will be followed as stated in EMP.
	ii) Hierarchical system or Administrative order of the Company to deal with environmental issues and ensuring compliance to the environmental clearance conditions and iii) System of reporting of non-compliance/violation	All the environmental issues are communicated to the top management in monthly MIS meeting and also to the Board of Directors quarterly through a systematic
	environmental norms to the Board of Directors of the company and/or stakeholders or shareholders.	structured format by Head – Environment.

xii.	An amount equal to Rs. 125 Lakhs, which is 2.5% of the	(1) An amount of Rs. 25500 /- handed over				
All	total project cost (Rs. 50 Crores) shall be earmarked towards the Enterprise Social Commitment based on issues raised during the Public Hearing and needs of local people. Item-wise detailed plan with time bound action plan would be prepared as indicated by the project proponent and this plan shall be implemented. Action taken report in this regard shall be submitted to the Ministry's Regional Office.	to 10 BPL students in the month of Dec-19. This will be continued on quarterly basis. (Total disburses Rs 1.02 Lacs). (2) Work for construction of Dispensary at Kismatshivramnagar has been started on April'2019 & till now we have expense Rs. 2.64 lakhs. In this period, we have expense Rs. 30000/ (3) In this period we have expense Rs. 23000/- for civil construction towards Financial support to local school. Till now total expense incurred is amounting Rs. 4.45 lakhs. (4) Construction of community hall is under progress at Kashberia village & till date we have expense Rs. 8.03 lakhs. In this period, we have expense Rs. 3.35 lakhs.				
		Total expenses - Till date we have expense Rs. 22.79 lakhs.				
xiii.	The project proponent shall provide for solar light system for all common areas, street lights, villages, parking around project area and maintain the same regularly.	Six Solar street lights have been installed within project site with all necessary arrangement.				
xiv.	The project proponent shall fully provide for LED lights in their offices and residential areas.	LED light has been installed throughout the plant.				
xv.	Provision shall be made for the housing of construction labour within the site with all necessary infrastructure and facilities such as fuel for cooking, mobile toilets, mobile STP, Safe drinking water, medical health care, crèche etc. The housing may be in the form of temporary structures to be removed after the completion of the project.	All facilities & infrastructures has been provided as per the requirement.				
PAR	T B – General Conditions					
i.	The project authorities must strictly adhere to the stipulations made by the West Bengal Pollution Control Board and the State Government.	Following all stipulated guideline of WBPCB & the state Government.				
II.	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment Forest and Climate Change (MoEF&CC).	We will not do any further expansion or modification in the plant without prior approval of MoEF&CC.				
iii.	At least four ambient air quality monitoring stations should be established in the downward direction as well as where maximum ground level concentration of PM10, PM2.5, SO2, NOx are anticipated in consultation with the SPCB.	Four AAQ monitoring stations have already been installed at different locations based on wind direction in consultation with SPCB. AAQ monitoring has been started from March 2019 on wards & the results				

	Data on ambient air quality and stack emission shall be regularly submitted to this Ministry including its Regional Office at Bhubaneswar and the SPCB/CPCB once in six month.	are within limit value. Month wise summary report is being attached for the said period in (Annexure-3).
iv.	Industrial waste water shall be properly collected treated so as to conform to the standards prescribed under GSR 422 (E) dated 19 th May ,1993 and 31 st December ,1993 or as amended from time to time . The treated waste water shall be utilized for plantation purpose.	Industrial waste water is being collected inland pond through surface drain & utilized it for plantation & dust suppression purpose.
v.	The overall noise levels in and around the plant area shall be kept well within the standards (85 dbA) by providing noise control measures including acoustic hoods ,silencers , enclosures etc. on all sources of noise generation .The ambient noise levels should conform to the standards prescribed under EPA Rules ,1989 viz.75 db A (day time) and 70 dbA (night time).	In house Ambient noise monitoring report as well as approve 3 rd party report is being attached in Annexure -4. Results are within limit.
vi.	Occupational health surveillance of the worker shall be done on a regular basis and records maintained as per the Factories Act	Occupational Health Surveillance programme is being done as per Factory Rules & records is being maintained as per Factories Act.
vii.	The company shall develop rain water harvesting structure to harvest the rain water for utilization in the lean season besides recharging the ground water table.	We have constructed a pond inside the plant. All rain water are collected in the pond through surface drain and it was utilize for dust suppression, water sprinkling & gardening purpose.
viii.	The project proponent shall also comply with all the environmental protection measures and safeguards recommended in the EIA /EMP report .Further the company must undertake socio —economic development activities in the surrounding village like community development programme ,educational programme ,drinking water supply and health care etc.	Complying as per EIA/EMP report.
ix.	Requisite funds shall be earmarked towards capital cost and recurring cost /annum for environment pollution control measures to implement the conditions stipulated by the Ministry Of Environment, Forest and Climate Change (MoEFCC) as well as the State Government .An implementation schedule for implementing all the conditions stipulated herein shall be submitted to the Regional Office of the Ministry at Bhubaneswar. The funds so provide shall not be diverted for any other purpose.	Complied as per documents already submitted on 10.01.2018.

x.	A copy of clearance letter shall be sent by the proponent to concerned Panchayats, Zila Prishad / Municipal Corporation, Urban Local Body and the local NGO, if any, from whom suggestions / representations, if any were received while processing the proposal. The clearance letter shall also be put on the web site of the Company by the proponent.	Copy of clearance letter had already been Submitted to concern authority and it is also put on the web site of the company.
xi.	The project proponent shall upload the status of compliance of the stipulated environment clearance conditions, including results of monitored data on their website and shall update the same periodically. It shall simultaneously be sent to the Regional Officer of the MoEF&CC at Bhubaneswar. The respective Zonal Office of CPCB and the SPCB. The criteria pollutant levels namely; PM10, SO2, NOx (ambient levels as well as stack emissions) or critical sectoral parameters indicated for the projects shall be monitored and displayed at a convenient location near the main gate of the company in the public domain.	Is being done.
xii.	The project proponent shall also submit six monthly reports on the status of the compliance of the stipulated environmental conditions including results of monitored data (both in hard copies as well as by e-mail) to the Regional Officer of MoEF&CC, the respective Zonal Office of CPCB and the SPCB .The Regional Office of this Ministry at Bhubaneswar /CPCB/SPCB shall monitor the stipulated conditions.	Is being followed.
xiii.	The environmental statement for each financial year ending 31 st March in Form- V as is mandated to be submitted by the project proponent to the concerned State Pollution Control Board as prescribed under the Environmental (Protection) Rules, 1986, as amended subsequently, shall also be put on the website of the company along with the status of compliance of environmental conditions and shall also be sent to the respective Regional Office of the MoEF&CC at Bhubaneswar by e-mail.	Environmental statement report for the financial year 2019- 2020 will be submitted in Form-V before 30/09/2020. This will also be uploaded in company's website and sent to all concerned as per EC conditions.
xiv.	The Project Proponent shall inform the public that the project has been accorded environmental clearance by the Ministry and copies of the clearance letter are available with the SPCB and may also be seen at Website of the Ministry of Environment, Forests and climate Change (MoEF&CC) AT http://envfor.nic.in. This shall be advertised within seven days from the date of issue of the clearance in the region of which one shall be in the vernacular language of the locality concerned	Already complied. Copy of which Submitted to your office on 10.01.2018.

	and a copy of the same should be forwarded to the Regional Office at Bhubaneswar.	
xv.	Project authorities shall inform the Regional Office as well as the Ministry: i)The date of financial closure	Project to be done out of internal accrual.
	ii)Final approval of the project by the concerned authorities	 Received NOC from WBPCB valid up to 31.08.2024. Received Consent to Operate from WBPCB on 30.05.19 & valid up to 31.03.2024.
	iii) The date of commencing the land development work.	Started on 02.04.2018.

ENVIROCHECK

Recognised by MoEF&CC, WBPCB, JSPCB & OSPCB Accredited by NABL (ISO/IEC 17025:2005) Certified by ISO 9001: 2015, ISO 14001: 2015 & OHSAS 18001:2007

OHSAS 18001 : 2007

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry		Electro Steel Castings Ltd. (Fe	Ferro Alloy Plant) Type of Industry :		:	Ferro Alloy Plant					
Address	1	Kashberia, P.O Shibram Naj	gar, Haldia, Purba	Sampling Date		26.10.2019 (11:45 a.m 12:13 p.m.)					
		Medinipur - 721635	Period of Analysi		:	26.10.2019 - 30.10.2019					
		The second second	Date of Issue	:	01.11.2019						
Sampling Plan	1&	Procedure : ENV/SOP/01	Deviation from the	e Sampling Method and	Plan	n : No Type of : Source Sample Emission					
Sample ID No		: ENV/68/Oct./A/III	Report No.	ENV/68/Oct./TR(A)	/111/	/19-20					

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to		D. G 250 KVA (Acoustic Enclosure)			Manufacture and a second
Shape of Stack		Circular	Height of Stack (mtr.) (from G. L.)		10.36
Materials of Construction	:	M.S.	Stack I.D. at sampling point (mtr.)	1	0.1524
Capacity	: 250 KVA		Height of sampling port (mtr.) (from G.L.)		7.92
Emission Due to		Combustion of H.S.D			
Fuel Used	111	H.S.D	Permanent Platfor	rm &	Ladder : Yes
Working Fuel Cons	ump	tion : 57 litr./hr.			
Pollution Control I)evice	: Nil	The second secon		

	LTS

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
	Flue Gas Temperature	oC -	IS: 11255 (Part 1)	:	90.0
2.	Barometric Pressure	mm of Hg.		1:	755.0
3.	Velocity of Gas flow	m/s	IS: 11255 (Part 3)		9.78
	Quantity of Gas flow	Nm³/hr.	IS: 11255 (Part III)	1:1	523.24
4.	Concentration of SO ₂	mg/Nm³	IS 11255 (Part 2) 1985 RA 2003		61.44
5. 6.	Concentration of NO _x	mg/Nm³	IS: 11255 (Part 7) 2005 & ASTM D 1608-98 reapproved 2009: Sec 11 (Vol. 11.07): 2011		82.8
7. 8. 9. -10.	Concentration of CO ₂ Concentration of CO *Concentration of O ₂ Concentration of Particulate	% (v/v) %(v/v) % (v/v) mg/Nm ³	IS 13270 1992 RA 2003 IS 13270 1992 RA 2003 IS 13270 1992 RA 2003 IS 11255 (Part - 1) 1985 RA 2003 & ASTM D	: :	7.2 <1.0 11.8 17.64
	Matter		3685/D 3685M-98 (reapproved 2005) : Sec 11(Vol. 3 11.07) : 2011		

Remarks : The parameters marked with an (*) are not Accredited by NABL

Reviewed By:

DURBADAL CHAKRABORTY Dy. Quality Manager Authorised Signatory:

: 63/B. Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792891 / 25497490 • Fax : 033 25299141

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792891 / 25497490 Laboratory : 189, 190 & 192 Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792889

E-mail : info@envirocheck.org / envirocheck50@gmail.com = Website : www.envirocheck.org Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

Overseas : UAE = Qatar = Netherlands

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry				rro Alloy Plant)	y Plant) Type of Industry :		:	Ferro Alloy Plant					
Address		: Kashberia, P.O. – Shibram Nag Medinipur - 721635) Shibram Nag	Nagar, Haldia, Purba		Sampling Date	1:	26.10.2019 (11:45 a.m 12:13 p.m.)				
				P		Period of Analysis		26.10.2019 - 30.10.2019					
							Date of Issue	:	01.1	1.201	9		
Sampling Plan	1&1	Procedure		ENV/SOP/01	Deviation from t	he:	Sampling Method and	Plan		No	Type of Sample	:	Source Emission
Sample ID No		: ENV/68	3/00	t/A/IV	Report No.	:	ENV/68/Oct/TR(A)	/IV/	19-2	0			

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to		Submerged Electrical Arc Furnace - 1			
Shape of Stack		Circular	Height of Stack (mtr.) (from G. L.)	Ė	35.0
Materials of Construction		M.S.	Stack I.D. at sampling point (mtr.)	1	1.80
Capacity		Rated - 9 MVA (Load - 7.6 MVA)	Height of sampling port (mtr.) (from G.L.)		30.0
Emission Due to		Melting of Coke/Coal, Manganese-Ore, Q	uartzite & Dolomite		
Fuel Used	:	Electrically Operated	Permanent Platfor	m &	Ladder : Yes
Working Fuel Con	sum	otion : Nil			
Pollution Control	Devi	ce : Bag Filter			

R.	re E.	311	5.5	-

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
1.	Flue Gas Temperature	D _O C	IS: 11255 (Part 1)	:	92.0
2.	Barometric Pressure	mm of Hg.		1:	755.0
3.	Velocity of Gas flow	m/s	IS: 11255 (Part 3)		17.19
4.	Quantity of Gas flow	Nm3/hr.	IS: 11255 (Part III)		126197.53
5.	Concentration of SO ₂	mg/Nm³	IS 11255 (Part 2) 1985 RA 2003		180.73
6.	Concentration of NO _x	mg/Nm³	IS: 11255 (Part 7) 2005 & ASTM D 1608-98		126.23
			reapproved 2009 : Sec 11 (Vol. 11.07) : 2011		
7.	Concentration of CO2	% (v/v)	IS 13270 1992 RA 2003	2	1.4
. 8.	Concentration of CO	%(v/v)	IS 13270 1992 RA 2003	1: 1	<1.0
9.	*Concentration of O2	% (v/v)	IS 13270 1992 RA 2003		16.6
10.	*Moisture	96	Emission Control Part - III, CPCB		0.965
11.	Concentration of Particulate	mg/Nm³	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D	: :	10.79
taro E	Matter		3685/D 3685M-98 (reapproved 2005) : Sec 11(Vol. 3 11.07) : 2011		

: The parameters marked with an (*) are not Accredited by NABL

Reviewed By

Authorised Signatory:

DURBADAL CHAKRABORTY Dy. Quality Manager

: 63/B. Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792891 / 25497490 • Fax : 033 25299141

H.O. : 189, 190 & 192 Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792889 Laboratory

: info@envirocheck.org / envirocheck50@gmail.com . Website : www.envirocheck.org E-mail Branch Office : Siliguri . Haldia . Durgapur . Dhanbad . Gangtok . Port Blair . Dehradun . New Delhi

: UAE . Qatar . Netherlands Overseas

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry	:	Electro Steel	Castings Ltd. (Fe	rro Alloy Plant)	Type of Industry	*			Plant						
Address		Kashheria P	O Shibram Nas	ar, Haldia, Purba	Sampling Date		26.1	0.201	9 (10:45 a.n	n	11:31 a.m.)				
Address		Medinipur -		Period of Analysis	13	26.1	26.10.2019 - 30.10.2019								
		, and a second			Date of Issue	:	01.1	1.201	9		200				
Sampling Plan	1 &	Procedure :	ENV/SOP/01	Deviation from the	e Sampling Method and	Plan	1	No	Type of Sample	:	Source Emission				
Sample ID No		: ENV/68/	Oct./A/V	Report No.	: ENV/68/Oct./TR(A)/٧/	19-20								

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to	:	Raw Material Handling System			30.0
Shape of Stack	:	Circular	Height of Stack (mtr.) (from G. L.)	1	30.0
Materials of Construction	:	M.S.	Stack I.D. at sampling point (mtr.)		0.6096
Capacity	:		Height of sampling port (mtr.) (from G.L.)		12.18
Emission Due to	:	Process Activity (Handling of Raw Material)			Ladder : Yes
Fuel Used	:	N.A.	Permanent Platfo	rm &	Ladder : res
Working Fuel Con	sum	otion : Nil			
Pollution Control	Devic	e : Bag Filter			

0.00		UNIT	B. RESULTS METHOD NO.		RESULTS
SL. NO.			IS: 11255 (Part 1)	:	55.0
1.	Flue Gas Temperature	oC .	S. HESS (M. C.)		7550
2.	Barometric Pressure	mm of Hg.	70 TO 10 TO		755.0
		m/s	IS: 11255 (Part 3)		11.51
3.	Velocity of Gas flow	111/5			10902.62
4.	Quantity of Gas flow	Nm³/hr.	IS: 11255 (Part III)		
		mg/Nm³	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D	1:	16.42
5.	Concentration of Particulate	1116/11111			
	Matter		3685/D 3685M-98 (reapproved 2005) : Sec		
		1000年16	11(Vol. 3 11.07): 2011	1	

Remarks

Reviewed By : Q

Authorised Signatory:

DURBADAL CHAKRABORTY Dy. Quality Manager

: 63/B, Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792891 / 25497490 • Fax : 033 25299141 H.O.

: 189, 190 & 192 Rastraguru Avenue, Kolkata - 700028 - Ph. 033 25792889

E-mail : info@envirocheck.org / envirocheck50@gmail.com = Website : www.envirocheck.org
Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

: UAE = Qatar = Netherlands Overseas

ENVIROCHECK

Recognised by MoEF&CC, WBPCB, JSPCB & OSPCB Accredited by NABL (ISO/IEC 17025:2017) Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry		Electro Steel Castings Ltd. (Fe	astings Ltd. (Ferro Alloy Plant) Type of Industry :							
Address		Kashberia, P.O Shibram Nag	ar, Haldia, Purba	Sampling Date		31.0	1.202	0		
		Medinipur - 721635		Period of Analysis		31.01.2020 - 01.02.2020				
				Date of Issue	:	03.0	2.202	0		
Sampling Plan	1&1	Procedure : ENV/SOP/01	Deviation from the	Sampling Method and	Plan	:	No	Type of Sample	:	Source Emission
Sample ID No		: ENV/51/Jan./A/I	Report No. :	ENV/51/Jan./TR(A)	/1/1	9-20				

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to		SEAF-1				
Shape of Stack		Circular	Height of S	Stack (mtr.) (from	:	35.0
Materials of Construction	:	M.S.	Stack I.D. (mtr.)	at sampling point	:	1.8
Capacity		09 MVA (Running - 6.3 MVA)	Height of a (mtr.) (fro	sampling port om G.L.)	1	30.0
Emission Due to		Melting of Coke / Coal, Mn-Ore, Quart	z & Dolomite			
Fuel Used		Electrically Operated		Permanent Platfor	m &	Ladder : Yes
Working Fuel Cons	umpt	ion : N.A.	1 1/6			
Pollution Control D	evice	: Bag Filter		vinez addell		

R RESULTS

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
1.	Flue Gas Temperature	oC .	IS: 11255 (Part 1)	:	81.0
2.	Barometric Pressure	mm of Hg.		1	756.0
3.	Velocity of Gas flow	m/s	IS: 11255 (Part 3)	:	15.27
4.	Quantity of Gas flow	Nm3/hr.	IS: 11255 (Part III)	: 5	117134.30
5.	Concentration of SO ₂	mg/Nm³	IS 11255 (Part 2) 1985 RA 2003	1:	262.13
6.	Concentration of NO _x	mg/Nm ³	IS: 11255 (Part 7) 2005 & ASTM D 1608-98	1:1	186.20
		THE STATE OF	reapproved 2009 : Sec 11 (Vol. 11.07) : 2011	14	
7.	Concentration of CO2	% (v/v)	IS 13270 1992 RA 2003	1	1.6
8.	Concentration of CO	%(v/v)	IS 13270 1992 RA 2003	:	<1.0
9.	*Concentration of O2	% (v/v)	IS 13270 1992 RA 2003		15.4
10.	Concentration of Particulate	mg/Nm³	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D	:	14.50
	Matter		3685/D 3685M-98 (reapproved 2005) : Sec		
			11(Vol. 3 11.07): 2011	188	

Remarks : The parameters marked with an (*) is not Accredited by NABL

Reviewed By:

DURBADAL CHAKRABORTY Dy. Quality Manager Approved By

: 63/B, Rastraguru Avenue, Kolkata - 700028 = Ph. 033 25792891 / 25497490 = Fax : 033 25299141

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 * Ph. 033 25792891 / 25497490 Laboratory : 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 * Ph. 033 25792889

E-mail : info@envirocheck.org /envirocheck50@gmail.com = Website : www.envirocheck.org Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

Overseas : UAE * Qatar * Netherlands

ROCHECK

Recognised by MoEF&CC, WBPCB, JSPCB & OSPCB Accredited by NABL (ISO/IEC 17025;2017)
Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry		Electro Steel Castings Ltd. (Fe	erro Alloy Plant)	Type of Industry		Ferr	o Alloy Plant			
Address	:	Kashberia, P.O Shibram Naj	gar, Haldia, Purba	Sampling Date	:	28.0	1.202	0		
		Medinipur - 721635		Period of Analysis	:	01.02.2020 - 01.02.2020 03.02.2020				
				Date of Issue	:					
Sampling Plan	. &	Procedure : ENV/SOP/01	Deviation from th	e Sampling Method and	Plan		No	Type of Sample	:	Source Emission
Sample ID No	T	: ENV/02/Feb./A/II	Report No.	: ENV/02/Feb./TR(A)/11/	19-20)			

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to	:	Raw Material Handling System				
Shape of Stack		Circular	Height of Sta G. L.)	ck (mtr.) (from		30.0
Materials of Construction	1	M.S.	Stack I.D. at s (mtr.)	sampling point	1	0.6096
Capacity	1		Height of sampling port (mtr.) (from G.L.)		1	12.18
Emission Due to	:	Process Activity (Handling of Raw Materials)			
Fuel Used	:	N.A.		Permanent Platfor	m &	Ladder : Yes
Working Fuel Cons	umpl	ion : Nil				
Pollution Control D	evice	: Bag Filter				

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
3	Flue Gas Temperature Barometric Pressure Velocity of Gas flow Quantity of Gas flow Concentration of Particulate Matter	oC mm of Hg. m/s Nm³/hr. mg/Nm³	IS: 11255 (Part 1) IS: 11255 (Part 3) IS: 11255 (Part III) IS 11255 (Part - 1) 1985 RA 2003 & ASTM D 3685/D 3685M-98 (reapproved 2005): Sec 11(Vol. 3 11.07): 2011	: : : : : : : : : : : : : : : : : : : :	35.0 756.0 23.12 26410.14 15.95

Approved By

DURBADAL CHAKRABORTY Dy. Quality Manager

: 63/B, Rastraguru Avenue, Kolkata - 700028 * Ph. 033 25792891 / 25497490 * Fax : 033 25299141

H.O. : 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 Ph. 033 25792889

E-mail : info@envirocheck.org /envirocheck50@gmail.com = Website : www.envirocheck.org
Branch Office : Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi

: UAE . Qatar . Netherlands Overseas

TEST REPORT

FORMAT NO: ENV/FM/38

Name of the Industry		Electro Steel Cas	stings Ltd. (Fe	rro Alloy Plant)	Type of Industry	:	Ferro Alloy Plant						
Address	3	Kashberia, P.O.	- Shibram Nag	ar, Haldia, Purba	Sampling Date		28.0	1.202	0				
		Medinipur - 721	635		Period of Analysis	1	01.02.2020 - 01.02.2020						
				Date of Issue			03.0	2.202	0				
Sampling Plan	1&1	Procedure : E	ENV/SOP/01	Deviation from th	e Sampling Method and	Plan	:	No	Type of Sample	**	Source Emission		
Sample ID No		: ENV/02/Feb.	/A/III	Report No.	: ENV/02/Feb./TR(A)/111/	/19-2	0					

A. GENERAL INFORMATION ABOUT STACK PROVIDED BY THE INDUSTRY

Stack Attached to		D. G. Set - 250 KVA (Acoustic Enclosure)				
Shape of Stack		Circular	Height of G. L.)	Stack (mtr.) (from	:	10.36
Materials of Construction	:	M.S.	Stack I.D. (mtr.)	at sampling point	1	0.1524
Capacity	:	250 KVA	Height of (mtr.) (fr	sampling port om G.L.)		7.92
Emission Due to	:	Combustion of H.S.D				
Fuel Used	:	H.S.D		Permanent Platfor	m &	Ladder : Yes
Working Fuel Cons	umpt	ion : 57 litr./hr.				
Pollution Control D	evice	: Nil				

			۰	ж	я			٠	-	a	۰,	*	×	и	м	w	
							2										

SL. NO.	PARAMETERS	UNIT	METHOD NO.		RESULTS
1.	Flue Gas Temperature	°C	IS: 11255 (Part 1)		85.0
2.	Barometric Pressure	mm of Hg.		1:00	756.0
3.	Velocity of Gas flow	m/s	IS: 11255 (Part 3)	:	11.75
4.	Quantity of Gas flow	Nm³/hr.	IS: 11255 (Part III)	1:	637.15
5.	Concentration of SO ₂	mg/Nm³	IS 11255 (Part 2) 1985 RA 2003	:	62.28
6.	Concentration of NO _x	mg/Nm³	IS: 11255 (Part 7) 2005 & ASTM D 1608-98 reapproved 2009: Sec 11 (Vol. 11.07): 2011		78.21
7.	Concentration of CO2	% (v/v)	IS 13270 1992 RA 2003	:	7.2
8.	Concentration of CO	%(v/v)	IS 13270 1992 RA 2003		<1.0
9.	*Concentration of O2	% (v/v)	IS 13270 1992 RA 2003	:	12.0
10.	Concentration of Particulate Matter	mg/Nm³	IS 11255 (Part - 1) 1985 RA 2003 & ASTM D 3685/D 3685M-98 (reapproved 2005) : Sec 11(Vol. 3 11,07) : 2011		24.19

Remarks : The parameters marked with an (*) is not Accredited by NABL

DURBADAL CHAKRABORTY Dy. Quality Manager

Approved By:

: 63/B, Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792891 / 25497490 • Fax : 033 25299141

H.O. Laboratory

: 189, 190 & 192, Rastraguru Avenue, Kolkata - 700028 • Ph. 033 25792889 : info@envirocheck.org /envirocheck50@gmail.com • Website : www.envirocheck.org E-mail Branch Office : Siliguri • Haldia • Durgapur • Dhanbad • Gangtok • Port Blair • Dehradun • New Delhi

: UAE . Qatar . Netherlands Overseas

AMBIENT AIR QUALITY

SUMMARY REPORT October 2019 to March 2020

Electrosteel Castings Ltd.
Ferro Alloy Plant
Haldia, Kasberia, P.O. – Shivramnagar,
Pin - 721635

Accredited by NABL (ISO/IEC 17025:2005)
Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

Electrosteel Castings Limited (Ferro Alloy Plant) Haldia, Kasberia, P.O. – Shivramnagar, Pin – 721 635

SUMMARY REPORT - OCTOBER, 2019

		Dakshir	n Kashberia-	South side	of the Facto	ry (Outside	Factory Pre	mises)		1	1:
Parameters	01.10.2019	04.10.2019	09.10.2019	12.10.2019	15.10.2019	19.10.2019	21.10.2019	25.10.2019	30.10.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	49.20	51.80	47.50	43.20	52.60	53.50	46.80	43.50	52.80	48.99	60
PM ₁₀ (µg/m ³)	81.50	86.20	78.50	76.20	80.50	82.60	78.50	76.20	86.50	80.74	100
SO ₂ (µg/m ³)	6.50	7.20	7.80	6.50	8.20	7.50	7.20	7.80	8.50	7.47	80
NOx (µg/m³)	25.0	30.0	31.80	26.50	32.50	28.50	25.0	26.50	35.0	28.98	80
			Main Gate	of Ferro Allo	y Plant (Ins	ide Factory	Premises)				
Parameters	01.10.2019	04.10.2019	09.10.2019	12.10.2019	15.10.2019	19.10.2019	21.10.2019	25.10.2019	30.10.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	53.80	54.50	56.0	52.80	54.50	51.20	49.50	52.80	50.10	52.80	60
PM ₁₀ (µg/m³)	91.80	86.50	92.50	93.80	90.10	91.50	86.20	93.80	91.50	90.86	100
SO ₂ (µg/m³)	8.50	8.20	9.50	. 10.0	11.80	9.20	10.80	11.20	10.0	9.91	80
NOx (µg/m³)	30.0	35.0	32.50	36.80	35.0	31.80	35.0	32.50	31.50	33.34	80
		К	ashberia Utt	arpally (No	rth Side) (Ou	itside Facto	ry Premises)			
Parameters	01.10.2019	04.10.2019	09.10.2019	12.10.2019	15.10.2019	19.10.2019	21.10.2019	25.10.2019	30.10.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	51.80	46.80	50.10	52.60	53.10	49.50	46.80	45.10	52.50	49.81	60
PM ₁₀ (µg/m³)	82.50	78.20	83.50	85.10	90.10	86.50	89.20	76.10	81.50	83.63	100
SO ₂ (µg/m ³)	7.80	6.50	8.10	6.80	7.50	7.20	7.50	6.80	7.50	7.30	80
NOx (µg/m³)	30.0	25.0	28.50	26.80	28.50	25.0	26.80	25.0	26.50	26.90	80
		K	ishmat Shib	ramnagar W	lest side (Ou	utside Facto	ry Premises)			
Parameters	01.10.2019	04.10.2019	09.10.2019	12.10.2019	15.10.2019	19.10.2019	21.10.2019	25.10.2019	30.10.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	46.10	45.20	48.10	50.10	53.20	51.80	46.80	51.80	52.50	49.51	60
PM ₁₀ (µg/m ³)	80.10	76.50	73.20	71.50	85.20	86.10	79.80	83.50	82.80	79.86	100
SO ₂ (µg/m ³)	6.50	6.20	7.20	7.50	8.0	7.80	6.80	7.20	7.50	7.19	80
NOx (µg/m³)	23.50	25.0	26.50	25.0	30.0	26.50	25.0	26.80	28.50	26.31	80

Continued page - 2

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

Email : info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org

Branch Office : - Siliguri - Haldia - Durgapur - Dhanbad - Gangtok - Port Blair - Dehradun - New Delhi

Overseas : * UAE * Qatar * Netherlands

Accredited by NABL (ISO/IEC 17025:2005) Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

SUMMARY REPORT - NOVEMBER 2019

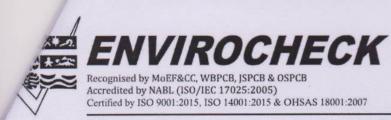
	D	akshin Kas	hberia- Sou	th side of th	ne Factory (Outside Fact	ory Premise:	s)	Avg	Limit on nor
Parameters	04.11.2019	08.11.2019	12.11.2019	16.11.2019	19.11.2019	22.11.2019	27.11.2019	30.11.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	51.8	56.2	54.8	51.8	54.2	53.8	54.9	56.8	54.29	60
PM ₁₀ (µg/m ³)	89.5	92.6	82.6	86.5	93.1	89.2	86.5	91.5	88.94	100
SO ₂ (µg/m ³)	6.80	7.50	6.20	6.80	7.80	7.50	6.80	8.20	7.20	- 80
NOx (µg/m³)	25.0	31.80	26.50	28.50	30.0	25.0	26.80	30.0	27.95	80
		Mai	n Gate of Fe	erro Alloy Pl	ant (Inside	Factory Pren	nises)			
Parameters	04.11.2019	08.11.2019	12.11.2019	16.11.2019	19.11.2019	22.11.2019	27.11.2019	30.11.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	51.80	53.20	49.10	50.10	56.50	51.20	48.50	56.80	52.15	60
PM ₁₀ (µg/m ³)	93.50	91.20	86.50	82.80	94.50	90.10	89.50	96.80	90.61	100
SO ₂ (µg/m³)	6.80	7.20	7.80	7.50	8.50	7.80	7.50	8.20	7.66	80
NOx (µg/m³)	25.0	30.0	31.80	30.0	32.50	26.80	28.50	31.80	29.55	80
		Kashb	eria Uttarpa	ally (North S	ide) (Outsid	le Factory Pr	remises)			110010
Parameters	04.11.2019	08.11.2019	12.11.2019	16.11.2019	19.11.2019	22.11.2019	27.11.2019	30.11.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	48.20	46.50	53.10	52.80	50.10	51.80	53.10	54.80	51.30	60
PM ₁₀ (µg/m ³)	81.20	78.50	86.20	83.50	80.10	81.20	83.50	86.20	82.55	100
SO ₂ (µg/m ³)	6.80	6.50	7.80	7.20	7.50	6.80	7.80	8.20	7.33	80
NOx (µg/m³)	26.50	28.50	29.20	26.50	28.50	25.0	30.0	31.80	28.25	80
		Kishm	at Shibrami	nagar West	side (Outsid	de Factory P	remises)			11.00
Parameters	04.11.2019	08.11.2019	12.11.2019	16.11.2019	19.11.2019	22.11.2019	27.11.2019	30.11.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	52.60	54.80	50.10	52.80	46.50	48.20	50.10	52.80	50.99	60
PM ₁₀ (µg/m ³)	81.20	83.50	82.60	88.50	78.20	76.50	78.20	89.50	82.28	100
SO ₂ (µg/m ³)	6.80	7.20	6.50	6.80	6.20	5.80	5.20	6.80	6.41	80
NOx (µg/m³)	25.0	26.50	23.50	25.0	23.50	20.0	18.50	25.50	23.44	80

Continued page - 3

H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Laboratory


: 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

Email

: info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org Branch Office: • Siliguri • Haldia • Durgapur • Dhanbad • Gangtok • Port Blair • Dehradun • New De h

Overseas : • UAE • Qatar • Netherlands

SUMMARY REPORT - DECEMBER, 2019

	D	akshin Kas	hberia- Sou	th side of th	ne Factory (Outside Fact	ory Premise	s)	Avg	Limit as per
Parameters	03.12.2019	06.12.2019	09.12.2019	12.12.2019	18.12.2019	21.12.2019	24.12.2019	30.12.2019	Avy	NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	48.5	46.2	45.1	51.2	48.5	46.2	50.1	55.2	48.88	60
PM ₁₀ (µg/m³)	80.1	82.5	78.2	81.2	76.8	82.5	80.1	86.2	80.95	100
SO ₂ (µg/m³)	6.50	7.20	6.80	7.50	7.20	8.20	7.50	6.80	7.21	80
NOx (µg/m³)	30.0	32.5	28.5	30.0	28.5	32.5	30.0	28.5	30.06	80
		Mai	n Gate of Fe	rro Alloy Pl	ant (Inside I	Factory Pren	nises)			Link
Parameters	03.12.2019	06.12.2019	09.12.2019	12.12.2019	18.12.2019	21.12.2019	24.12.2019	30.12.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	46.1	43.2	51.5	53.2	50.1	51.2	52.8	56.1	50.53	60
PM ₁₀ (µg/m³)	81.2	86.5	93.2	90.1	86.5	80.1	82.5	93.2	86.66	100
SO ₂ (µg/m ³)	7.80	7.20	8.50	8.50	7.80	7.60	8.10	8.50	8.0	80
NOx (µg/m³)	30.0	31.50	35.0	36.50	30.0	28.50	31.20	35.0	32.21	80
		Kashb	eria Uttarpa	lly (North S	ide) (Outsid	le Factory Pr	remises)		Ava	Limit as per
Parameters	03.12.2019	06.12.2019	09.12.2019	12.12.2019	18.12.2019	21.12.2019	24.12.2019	30.12.2019	Avg	NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	45.1	42.8	51.6	50.1	52.8	46.1	48.2	51.2	48.49	60
PM ₁₀ (µg/m ³)	80.1	76.8	82.5	81.2	83.5	78.5	82.6	80.1	80.66	100
SO ₂ (µg/m ³)	7.50	6.80	8.20	7.20	8.50	7.50	7.80	8.0	7.69	80
NOx (µg/m³)	30.0	26.5	30.0	26.5	31.2	25.0	26.2	30.0	28.18	80
			at Shibramr	nagar West	side (Outsid	le Factory P	remises)			
Parameters	03.12.2019	06.12.2019	09.12.2019	12.12.2019	18.12.2019	21.12.2019	24.12.2019	30.12.2019	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	43.2	48.1	51.2	52.1	50.2	48.5	52.8	46.5	49.08	60
PM ₁₀ (µg/m ³)	76.5	81.2	86.5	82.1	80.1	78.5	90.1	76.2	81.40	100
SO ₂ (μg/m ³)	7.80	6.50	6.80	7.20	6.50	6.80	7.50	7.20	7.04	80
NOx (µg/m³)	25.0	20.0	23.50	25.0	21.80	25.0	26.50	21.80	23.58	80

Continued page - 4

H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 [033-25792891/25497490, Fax : 033-25299141

Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

: info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org Branch Office: • Siliguri • Haldia • Durgapur • Dhanbad • Gangtok • Port Blair • Dehradun • New Delh

: • UAE • Qatar • Netherlands Overseas

Ferro Allo

VVIROCHECK

Recognised by MoEF&CC, WBPCB, JSPCB & OSPCB Accredited by NABL (ISO/IEC 17025:2005) Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

SUMMARY REPORT - JANUARY, 2020

	Dakshir	Kashberia	- South side	of the Facto	ory (Outside	Factory Pre	mises)	Avg	Limit as per NAAQ
Parameters	06.01.2020	09.01.2020	13.01.2020	16.01.2020	21.01.2020	25.01.2020	27.01.2020		Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	52.6	54.8	46.2	51.8	56.2	54.1	50.2	52.27	60
PM ₁₀ (µg/m ³)	80.2	82.5	76.2	80.1	90.2	89.5	86.5	83.60	100
SO ₂ (µg/m ³)	6.80	8.20	6.50	6.20	7.80	6.50	6.20	6.89	80
NOx (µg/m³)	23.50	28.20	25.00	26.50	28.50	23.80	25.00	25.79	80
, , ,	Semisur.	Main Gate	of Ferro Al	loy Plant (Ins	ide Factory	Premises)		Avg	Limit as per NAAQ
Parameters	06.01.2020	09.01.2020	13.01.2020	16.01.2020	21.01.2020	25.01.2020	27.01.2020	Avg	Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	53.2	50.1	49.2	51.2	48.5	52.5	53.8	51.21	60
PM ₁₀ (µg/m ³)	92.1	90.5	86.2	82.6	81.5	86.5	92.5	87.41	100
SO ₂ (µg/m ³)	8.20	7.80	7.20	7.50	6.80	7.50	8.20	7.60	80
NOx (μg/m³)	30.0	28.20	26.50	28.50	30.00	26.50	35.00	29.24	80
Tox (pg/m)			ttarpally (N	orth Side) (O	utside Fact	ory Premises	5)		Limit on our NAAO
Parameters	06.01.2020	09.01.2020	13.01.2020	16.01.2020	21.01.2020	25.01.2020	27.01.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	51.2	53.8	48.2	56.1	54.2	46.8	54.2	52.07	60
PM ₁₀ (µg/m³)	83.2	85.1	80.1	89.2	85.2	76.5	91.5	84.40	100
SO ₂ (μg/m ³)	6.50	6.80	6.80	8.50	7.20	7.50	7.20	7.21	80
NOx (μg/m³)	25.0	26.50	26.50	28.50	30.00	28.20	30.00	27.81	80
NOX (pg/iii)		The second secon	3003003000	West side (C	outside Fac	tory Premise	s)		1 i-it NA AO
Parameters	06.01.2020	09.01.2020	13.01.2020	16.01.2020	21.01.2020	25.01.2020	27.01.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	43.5	48.2	51.8	52.6	54.1	50.2	53.6	50.57	60
PM ₁₀ (µg/m³)	78.2	80.1	83.2	86.2	85.1	81.2	89.5	83.36	100
SO ₂ (µg/m³)	6.2	6.80	7.20	7.50	6.80	7.20	7.80	7.07	80
NOx (μg/m³)	23.50	25.00	26.80	28.50	23.50	25.00	26.80	25.59	80

Continued page - 5

H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889

Branch Office: Siliguri = Haldia = Durgapur = Dhanbad = Gangtok = Port Blair = Dehradun = New Delhi Plant

Overseas: **UAE = Qatar = Netherlands : info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org

: * UAE * Qatar * Netherlands Overseas

OHSAS 18001 : 2007

Accredited by NABL (ISO/IEC 17025:2005)
Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

SUMMARY REPORT - FEBRUARY, 2020

		Dakshin Ka	shberia- So	uth side of t	the Factory	Outside Fac	tory Premis	ses)	1	
Parameters	01.02.2020	04.02.2020	07.02.2020	10.02.2020	13.02.2020	19.02.2020	22.02.2020	28.02.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	48.2	51.8	38.2	36.5	52.8	36.5	43.2	48.5	44.46	60
PM ₁₀ (µg/m ³)	81.2	92.5	76.2	72.5	90.1	68.2	85.1	80.2	80.75	100
SO ₂ (µg/m³)	6.8	7.6	6.8	7.2	8.5	6.5	7.2	7.8	7.30	80
NOx (µg/m³)	25.0	32.5	26.5	25.0	32.5	20.0	26.8	28.5	27.10	80
		Ma	in Gate of F	erro Alloy P	lant (Inside	Factory Pres	mises)			
Parameters	01.02.2020	04.02.2020	07.02.2020	10.02.2020	13.02.2020	19.02.2020	22.02.2020	28.02.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	52.8	46.2	48.1	51.	53.8	50.1	51.8	56.8	51.33	60
PM ₁₀ (µg/m ³)	91.2	86.5	82.1	80.1	93.2	86.5	82.1	93.6	86.91	100
SO ₂ (µg/m ³)	10.0	8.5	8.2	8.2	7.5	6.8	9.2	10.0	8.55	80
NOx (µg/m³)	35.0	30.0	28.5	26.8	25.0	23.5	12.5	31.50	26.60	80
		Kash	beria Uttarp	ally (North S	Side) (Outsid	de Factory P	remises)			
Parameters	01.02.2020	04.02.2020	07.02.2020	10.02.2020	13.02.2020	19.02.2020	22.02.2020	28.02.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	46.2	42.8	38.5	51.2	46.8	42.5	46.8	48.5	45.41	60·
PM ₁₀ (µg/m ³)	83.2	80.1	76.8	82.5	73.2	85.1	80.2	83.5	80.58	100
SO ₂ (µg/m ³)	6.50	7.50	7.2	8.0	6.5	8.5	8.2	7.8	7.53	80
NOx (µg/m³)	25.0	26.5	25.0	30.0	23.8	26.5	28.2	25.0	26.25	80
		Kishn	nat Shibram	nagar West	side (Outsid	de Factory P	remises)			
Parameters	01.02.2020	04.02.2020	07.02.2020	10.02.2020	13.02.2020	19.02.2020	22.02.2020	28.02.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	51.2	53.6	38.5	36.2	42.5	46.8	51.2	48.2	46.03	60
PM ₁₀ (µg/m³)	81.5	92.5	76.2	73.5	80.1	83.5	91.2	86.5	83.13	100
SO ₂ (µg/m³)	6.80	6.50	6.20	7.50	6.50	6.80	7.50	7.20	6.88	80
NOx (µg/m³)	25.0	23.50	20.00	23.50	20.0	21.80	26.20	25.00	23.13	80

Continued page - 6

CAS

Ferro Alloy

H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Laboratory

: 189,190&192 Rastraguru Avenue, Kolkata - 700028 [033-25792889

Branch Office : * Siliguri * Haldia * Durgapur * Dhanbad * Gangtok * Port Blair * Dehradun * New Delh

: info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org

Overseas : • UAE • Qatar • Netherlands

ROCHECK

Recognised by MoEF&CC, WBPCB, JSPCB & OSPCB Accredited by NABL (ISO/IEC 17025:2005)
Certified by ISO 9001:2015, ISO 14001:2015 & OHSAS 18001:2007

SUMMARY REPORT - MARCH, 2020

	Dakshin k	(ashberia- S	South side o	f the Factor	y (Outside Fa	ctory Premises)		11-11
Parameters	02.03.2020	06.03.2020	10.03.2020	13.03.2020	16.03.2020	19.03.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	47.9	45.1	50.2	48.5	45.8	51.2	48.12	60
PM ₁₀ (µg/m ³)	81.2	83.1	87.2	80.1	79.2	85.2	82.67	100
SO ₂ (µg/m³)	7.8	7.5	8.0	7.5	7.8	7.8	7.73	80
NOx (µg/m³)	26.5	25.0	31.8	30.0	28.2	30.0	28.58	80
	N	lain Gate of	Ferro Alloy	Plant (Insid	de Factory Pre	emises)		
Parameters	02.03.2020	06.03.2020	10.03.2020	13.03.2020	16.03.2020	19.03.2020	Avg	Limit as per NAAQ Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	53.8	52.6	50.2	51.6	48.2	52.5	51.48	60
PM ₁₀ (µg/m ³)	90.8	92.5	86.2	87.5	82.1	85.2	87.38	100
SO ₂ (µg/m ³)	9.2	7.8	8.5	8.2	7.8	8.5	8.33	80
NOx (µg/m³)	35.0	28.5	32.8	31.8	30.0	32.5	31.77	80
	Kas	hberia Utta	rpally (North	Side) (Out	side Factory F	Premises)		
Parameters	02.03.2020	06.03.2020	10.03.2020	13.03.2020	16.03.2020	19.03.2020	Avg	Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	48.5	45.2	41.8	42.5	46.1	41.5	44.27	60
PM ₁₀ (µg/m ³)	81.5	80.1	78.9	83.5	85.6	82.5	82.02	100
SO ₂ (µg/m³)	7.2	6.5	6.2	7.5	8.0	7.5	7.15	80
NOx (µg/m³)	28.5	25.0	23.8	25.0	28.2	26.5	26.17	80
	Kish	nmat Shibra	mnagar We	st side (Out	side Factory F	Premises)		
Parameters	02.03.2020	06.03.2020	10.03.2020	13.03.2020	16.03.2020	19.03.2020	Avg	Standards (24 hours) (Schedule VII)
PM2.5 (µg/m³)	47.1	45.8	39.8	42.6	38.5	41.3	42.52	60
PM ₁₀ (µg/m ³)	86.5	82.2	78.1	83.6	76.1	80.1	81.10	100
SO ₂ (µg/m ³)	7.20	6.8	6.5	8.2	6.5	7.2	7.07	80
NOx (µg/m³)	28.5	25.0	23.8	26.2	23.8	25.0	25.38	80

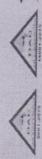
Date: 15.04.2020

Authorized Signatory

H.O.

: 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141

Overseas


Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889 : info@envirocheck.org /envirocheck50@gmail.com / Website : www.envirocheck.org

: * UAE * Qatar * Netherlands

Branch Office: * Siliguri * Haldia * Durgapur * Dhanbad * Gangtok * Port Blair * Dehradun * New Delta Forte

Dee-2019 (FAP)

OHSAS

TEST REPORT

	2
	Works - Kashberia, P.O - Shivranmagar, Haldia, District - Purba Medini Pin - 721635
1	led
	2
	- fi
	Z
	1
	ric
	ist
	, .
ant	die
E	H
loy	Ē,
1	age
Ĕ	
(Fe	Ē
7	E C
H	Ĭ.
	0.
2	3
5	7
Ses	4
7	35
Ste	- K
2	72
60	10
E	3 2
: Electro Steel Castings Limited (Ferro Alloy Plant)	
of the industry/Factory/Company	

24/12/2019 18/12/2019

497/EC/M/N/19-20 IS: 9989 - 1981

20 Minutes

4 feet

Height from Ground Level Time of Duration of Noise

VIII.

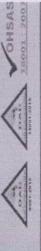
Reporting Date

Method No Report No

Distance of Source Type of Industry

Sample Monitoring by

Mr. Kaushik Podder Ferro Alloy Plant 3 meter


					MONITOR	MONITORING IN FERRO-ALLOY PLANT IDAY TIME!	FERRO-ALLOY PLAN	TANIA YO	(DAY TIR	IME					
St. No.	Location	7:00 A.M	52 9:00 A.M	11:00 A.M	S 1:00	3:00	S6 5:00	6:00	58 7:00	8:00	\$10 9:00	Min dB(A)	Max dB(A)	Average dB(A	Leq dB(A)
	Main Gate (West Side)	5.89	66.2	70.2	999	1.69	62.1	200	59.9	58.7	57.1	57.1	70.2	63.8	65.93
	East Side Boundary Wall	74.1	71.9	70.2	588.2	72.3	67.5	64.1	62.3	61.8	6.09	6.09	74.1	67.3	69.44
	South Side Boundary Wall (Towards COP Coal Shed)	683	70.2	73.5	5.69	70.9	68.2	63.6	64.2	62.9	61.2	61.2	73.5	67.2	68.79
5	North Side Boundary Wall (Towards Pattern Shop)	75.2	75.3	692	70.2	71.3	69.5	68.2	9.79	65.3	63.9	63.9	76.9	70.3	72.23
S.	Limit	75									1				

H.O. : 63/B, Rastraguru Avenue, Kolkata - 700028 (033-25792891/25497490, Fax : 033-25299141
Laboratory : 189,190&192 Rastraguru Avenue, Kolkata - 700028 (033-25792889
Email Email Branch Office : * Siliguri - Netherlands - Canglok - Port Blair - Dehradun - New Deibit Overseas

Ferro Alloy Plant

Recogniscal by Marth &CC, William & OSPCH
According by NAME (1907-1907) (2007-2007)
Centified by Iso 9001-2015, ISO 14001-2015 & OHSAS 18001-2007

Leq dB(A)

63.49 63.66 59.21

16.19

		Average dB(A	60.44	60.73	59.65	56.29				Night Time dB(A)	70	5.5	45	40	"Night Time is reckoned in between 10:00 P.M & 6:00 A.M	
		Max dB(A)	6.59	68.1	68.2	8.89			10 ENE						Time is reckoned in b 10:00 P.M & 6:00 A.M	
		Min dB(A)	50.3	50.6	49.5	46.9				ime C					light Time 10:00	(Central Pollution Control Board, Ministry of Environment & Forests Government of India) & (Department of Environment, Government of West Bengal)
		2:30 A.M	50.3	9.05	49.5	46.9				Day Time dB(A)	75	99	55	20		nment o
	ME)	2:00 A.M	56.4	54.1	50.2	48.2		gy	0.00							n Control Board, Ministry of Environment & Forests Govern (Department of Environment, Government of West Bengal)
ruby	MONITORING IN FERRO-ALLOY PLANT (NIGHT TIME)	1.30 A.M	59.2	57.3	53.6	51.3		** Mean of Leg - Equivalent to Sound Energy								t & Fore
RESULT OF NOISE LEVEL STUDY	YPLANT	57 1:00 A.M	60.5	56.2	54.2	54.2		nt to Sou	dB(A)				10			ironmen
NOISE	RO-ALLO	S6 12:30 A.M	62.3	5.09	59.1	55.3		Equivale	Limit in Leq dB(A)							y of Env
ULTOF	NG IN FER	SS 12:00 P.M	9.19	63.7	62.5	58.7		of Leg.	Lim				ć.			, Ministr Environ
RES	ONITORIN	54 11.30 P.M	5.09	64.8	66:1	62.8		* * Mean							betwee	of Board
	2	S3 11:00 P.M	62.9	65.3	64.9	5.03									G:00 A.M & 10:00 P.M	On Contr
		52 10:30 P.M	64.2	2.99	68.2	61.2						100	1		ne is rec	I Pollut
		S1 10:00 P.M	63.5	88.1	67.9	83.8	70								**Day Time is reckoned in between 6:00 A.M & 10:00 P.M	(Centra
		Location	Main Gate (West Side)	East Side Boundary Wall	South Side Boundary Wall (Towards COP Coal Shed)	North Side Boundary Wall (Towards Pattern Shop)	Limit			Category Area	A. Industrial Area	B, Commercial Area	C. Residential Area	D, Silence Zone		
		St. No.	1	2.	ré ·	4	si			Catego	A. Ind	B, Con	C. Res	D. Sile	100	

Report Print Date: 24/12/2019


>End of Report<

: 63/B. Rastraguru Avenue. Koikata - 700028 (033-25792891/25497490. Fex: 033-25299141 189,1908.192 Rastraguru Avenue. Koikata - 700028 (033-2579288 esta envelved Company of C H.O. Laboratory 11 Email Oversoas

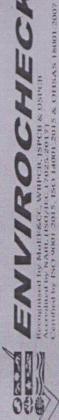
Haven, 2020

Recognised by Mod-Pacing WHIPER, 1975/15 & OSPCH
According by Noth, (180/HC17925-2017)
Certified by ISO 9001 2015, 180 14001 2015 & OHSAS 18001 2007

TEST REPORT

Name of the Industry/Factory/Company ;	Electro Steel Castings Limited (Ferro Alloy Plant)
Address	Works - Kashberia, P.O - Shivramnagar, Haldia, District - PurbaMedinipore, Pin - 721635
Date of Sampling :	11/03/2020
Reporting Date	17/03/2020
Report No	606/EC/M/N/19-20
Method No	18:9989 - 1981
Time of Duration of Noise	20 Minutes
Height from Ground Level	4feet
Distance of Source	3 meter
Type of Industry	Ferro Alloy Plant
Sample Monitoring by :	Mr. Kaushik Podder

	NO SELEVEL	
	9	
g:	,	
F	z	
E	Z	
ŀ	2	
F	2	
	2	
	2	
	2	
	2	
	2	
	2	
	2 2 2	
	2 2 2 2	
	2000	
	2121212	
	MINIS	
	MINIS	
	MISSES	
200000000000000000000000000000000000000	A MISSIES	
************	AMBIEN	
A STATE OF THE PARTY OF THE PAR	AMINEN	
THE REAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	AMBIEN	
THE RESERVE AND IN CO.	A MINIES	
The second second	A MINIST	
	T A M IST IS A	
THE R P. LEWIS CO., LANS.	T A M IST IN	
CANADA SAN A TANADA	N W W W W W	
CAN'T A MANAGEMENT	CHAMBIEN	
CART A REPRESENTA	OF AMBIEN	
CAN'T A REPORT OF	CLAMBIEN	
CAN'T A MANAGEMENT	CHAMBIEN	
CAN'T A MANAGEMENT	KESOLL OF AMBIEN	
CAN'T A MANAGEMENT	CHAMBIEN	


				Σ	MONITORI	ING IN FEF	FERRO-ALLOY PLANT	DY PLANT	(DAY TIME)	AE)					
THE STREET	Location	51	52	53	z	55	95	57	88	89	510	Min	Max	Average	Leg
No.		7:00 A.M	9:00 A.M	11:00 A.M	1:00 P.M	3:00 P.M	5:00 P.M	6:00 P.M	7:00 P.M	8:00 P.M	9:00 M.4	dB(A)	dB(A)	AB(A	dB(A)
	Main Gate (West Side)	66.4	67.2	9.69	68.4	2.73	70.0	69.4	67.3	66.2	65.5	65.5	70.0	22.73	68.02
	2. East Side Boundary Wall	71.7	70.2	68.3	68.4	71.0	67.9	71.8	71.3	71.6	72.0	67.9	72.0	70.42	70.65
	South Side Boundary Wall (Towards COP Coal Shed)	70.5	72.0	71.0	71.6	0.69	71.2	70.7	71.7	70.2	71.4	0.69	72.0	70.93	71.01
4	North Side Boundary Wall (Towards Pattern Shop)	68.4	69.2	9.69	68.7	70.0	68.6	69.5	69.3	68.8	68.2	68.2	0.07	69.03	90.69
	5. Umit	75													

Laboratory Email Branch Office Overseas H.0.

63/8. Rastraguru Avenue. Kolkata - 700028 (033-25792891/25497490, Fax: 033-25299141 1199, 1908, 192 Rastraguru Avenue. Kolkata - 700028 (033-25792886). Fax: 033-25299141 1199, 1907, 1908, 192 Rastraguru Avenue. Kolkata - 700028 (033-25792886). Fax: 033-25299141 1199, 1908, 192 Rastraguru Avenue. Kolkata - 700028 (033-25792891/25497480). Fax: 033-25299141 1199, 1908,

Ferro Alloy Plant

March - 2020

1. Location S1 10:00	52 S3 10:30 11:00 P.M P.M 61.8 63:5 67.0 65:6 67.2 66.8	S4.2 64.2 6 67.1	\$5		PLANIL	MONITORING IN FERRO-ALLOY PLANT (NIGHT TIME)	ME)					
te (West Side.) 62.7 Boundary Wall 67.4 Boundary Wall 67.3 COP Coal Shed.) 65.5 s Pattern Shop.) 70				- 56	5.7	88	59	510	Min	May	Autoropeo	100
te (West Side) 62.7 Boundary Wall 67.4 Beoundary Wall 67.3 COP Coal Shed) 65.5 Fe Boundary Wall 65.5			12:00	12:30	1:00	1:30	2:00	2:30	dB(A)	dB(A)	dB(A	dB(A)
te (West Side) 62.7 Boundary Wall 67.3 COP Coal Shed) 65.5 E Boundary Wall 65.5 Pattern Shop) 70			₽.₽	A.M	A.M	A.M	A.M	A.M				
Boundary Wall 67.4 te Boundary Wall 67.3 s COP Coal Shed) te Boundary Wall 65.5 s Pattern Shop) 70		-	9.69	61.5	63.7	63.0	62.8	62.5	61.5	64.6	63.03	63.13
e Boundary Wall 67.3 s COP Coal Shed) te Boundary Wall 65.5 s Pattern Shop) 70			67.2	0.89	8.99	68.8	67.9	65.7	65.0	68.8	66.85	66,98
s Pattern Shop) 70		8 66.9	68.0	68.2	299	0.79	67.1	67.4	8.99	68.2	67.26	67.29
	The last deposit the la	0.89	979	65.8	66.2	67.1	2.79	87.9	65.5	68.0	96.99	67.04
Date of the second								1				
Cat subsection A mides		** Mean	** Mean of Les - Equivalent to Sound Energy	quivalen	t to Sour	nd Energ	A					
Patemore Arios			Limi	Limit in Leg dB(A)	(B(A)							
dan gold Arted								Day Time	ime, ii		Night Time	
A. Industrial Area								75			70	
B. Commercial Area	1							. 65			55	
C. Residential Area								55			45	
D. Silence Zone						(20)		20			40	
**Day Time is reckoned in between	Time is reckoned in b	I in betwee	0					1	fight Time	Time is reckoned in b	**Night Time is reckoned in between	

Report Print Date: 18/03/2020

>End of Reports

Authorized Signatory with Stamp

63/B. Rastraguru Avenue. Kolkata - 700028 (033-25792891/25497490 Eax 633-25299141 Info@envirocheck.org fenvirocheck50@gmail.com / Website: www.envirocheck.org fenvirocheck50@gmail.com / Website: www.envirocheck.org - Silliguri - Durgapur - Dhanbad - Gangtok - Fort Blair - Dohradun - New Delhi

H.O. Laboratory Email Branch Offic ASTIN Ferro Alloy Plant

SI No	LOCATION			MBIENT	NOISE LE	VEL -db(A)
NO		Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
1	Main Gate (West Side)	72	71	67	69	72.00	71
2	East side Boundary wall	68	70	69	71	70.00	70
3	Near Furnace building (south side boundary wall)	70	71	69	70	69.00	71
4	North Side Boundary wall (Towards Pattern Shop)	72	73	72	70	71.00	72
5	AVG.	70.50	71.25	69.25	70.00	70.50	71.00
6	LIMIT	75					

SI No	LOCATION			AMBIENT	NOISE LE	VEL -db(A)
		Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20
1	Main Gate (West Side)	68	69	65	67	68	67
2	East side Boundary wall	65	67	66	65	67	68
3	Near Furnace building (south side boundary wall)	64.	65	63	65	64	68
4	North Side Boundary wall (Towards Pattern Shop)	67	69	68	69	68	67
5	AVG.	66.00	67.50	65.50	66.50	66.75	67.50
6	LIMIT	70	100 m			1 11	

